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Annotation

This collection consists of articles devoted to vibrations, vibra-
tion strength of aircraft engine components and the stability of three-
layer shells. These papers deal with vibrations of turbomachine rotors
and methods for determining optimal parameters of hydraulic damping
mounts, the vibrations of systems with friction and determination of
their dynamic compliance, as well as self-induced vibrations of com-
pressor blades. A design method taking into account the vibration of
variable-thickness disks and an analysis of the operation of a hydro-
static bearing as a source of shaft vibrations are presented. These
papers are intended for scientific workers and engineers of the aircraft
engine industry, as well as of the power and transportation industries.
It may be useful to instructors and students of senior courses in these
specializations. :
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FOREWORD

Over several years the Moscow Aviation Institute has conducted
studies on vibration, strength and stability of aircraft engine compo-
nents. The present collection contains a brief description of some of

these studies.

The first four articles - by Docent A. N. Ogurechnikov, Docent Cand-
idate of Technicgl Sciences K. A. Kryukov, engineers V. M. Balepin and
Ye. A. Artemov - are devoted to the problem of critical rpm of gas tur-
bine rotors. They describe the shape of the elastic curve of a weightless
shaft carrying eccentric point masses and obliquely seated disks and
prove the validity of Wiedler's postulate for systems executing flexural
oscillations; they also present methods for determining the optimal param-
eters of turbomachinery rotor mounts and the complianceé of a system with
friction. In addition, they analyze forced vibrations of a free shaft
with friction and give an overall method for calculating them. These

articles are continuations

of the papers previously published in Trans-

actions of the Moscow Aviation Institute (Issues No. TL4, 19563 No. 100,

‘1959 and No. 136, 1961).

The article of Candidate of Technical Sciences I. M. Movshovich is
devoted to the study of self-induced vibrations in axial compressors, a
phenomenon encountered in modern machinery. Here, blade assemblies of
the same design and manufacture start to vibrate at different initial air
stream pressures. Movshovich shows what must be done to tune the blade
assembly to the highest initial air stream pressure.

The remaining articles deal with the vibrations in certain aircraft
engine components and the determination of their stability. Thus, engi-

neer A. V. Karpov presents

a variational method for calculating the vibra-~

tions of variable-thickness disks. Candidate of Technical Sciences
G. A. Ivanov is concerned with the hydrostatic bearing as a source of
rotor vibrations and points out a method for eliminating them. Candidate

of Technical Sciences V. V.

stability of a three-layer

Serdyukov gives a method for calculating the
shell beyond the elastic limit. Candidate of

Technical Sciences V. B. Gorlov considers the use of conformal mapping in
problems of the theory of elasticity. Candidate of Technical Sciences

I. A. Yefimov examines the
the elastic and nonelastic
critical loads in the case
lateral pressure on such a
corrugated filler.

stability of three-layer cylindrical shells in
regions, and presents a method for determining
of combined action of an axial force and
shell with a longitudinal and transverse

G. Skubachevskiy

vi
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Proves the validity of Wiedler's postulate for
the following systems which execute flexural vibra-
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THE SHAPE OF THE ELASTIC CURVE OF A WEIGHTLESS ROTATING SHAFT
CARRYING ECCENTRICALLY LOCATED POINT MASSES OR DISKS

Docent A. N. Ogurechnikov

The study of the shape of the elastic curve of a rotating shaft which /5
precesses as it undergoes resonance vibrations is of no particular practi-
cal significance, since the theoretical basis in calculating the vibration
frequency is Wiedler postulate, in which the elastic curve is regarded as
plane, and its shape during resonance is assumed to be similar to that of
the elastic curve in unrestrained oscillation. However, it is quite fre-
quently claimed that the elastic curve of a vibrating shaft, by virtue of
the different directions of eccentricities of its associated masses, is
actually a space curve. This assertion, which is entirely correct for
forced vibrations of a shaft, becomes invalid when extended to the case of
resonance vibrations.

The elastic curve of a shaft undergoing precession during resonance
vibrations must be a plane curve, since the shaft vibrates in all axial
planes with the same frequencyj; thus, all the projections of the outline
of the elastic curve onto these planes should be similar, which can occur
only if the elastic curve is a planar one.

Academician B. S. Stechkin has rigorously proven the validity of
Wiedler's postulate for systems executing torsional vibrations. We shall
prove the validity of this postulate for systems which execute flexural
vibrations, namely:

1) for a shaft with two eccentrically located point masses;

2) for a shaft carrying an eccentrically coupled point mass and an
obliquely seated ideal thin disk.

Without detriment to the generality of proof, we shall consider the
case of direct synchronous precession, where the eccentricities and the
torque transmitted to the shaft by the drive are the sources of the
vibrations.

A PERFECTLY ELASTIC WEIGHTLESS SHAFT /6
WITH TWO ECCENTRICALLY COUPLED POINT MASSES

A schematic of the shaft system is shown in Fig. 1. The axis of the

system at rest is denoted by point 0. We use the notation: & and ey -

eccentricities of the coupled point masses; 2t - angle between the direc-

tion of above eccentricities; my and m, - point masses coupled to the

system; 91 and 92 - points of the elastic curve of the bent shaft at the

sections passing through the sites of coupling of the point masses;

¥Numbers in the margin indicate pagination in the foreign text.



yf y and x - coordinate axes; here y is the axis
parallel to the bisector of angle 271; @l and

©

) direction angles of the shaft deflections.

When the shaft rotates with velocity w
lower than the critical one, a direct synchro-
nous precession ensues. Due to the eccentric-

ities e and e, of the coupled masses m, and

m, the shaft axis will be deflected and thus

become a spatial curve; the shaft sections, to
which these masses are connected, will occupy
positions gl and 92'

r..—..xz——

Figure 1. The Pro-
jection of the Elastic
Curve of a Shaft with Since
Two Point Masses onto
a Plane Perpendicular O Ocr
to its Axis.
the shaft deflections are described by

="y, + €, cos 1) m,0%; -+ (y, + &, cos T) My,
Yo="(y1-+ €; COs T) M08, 4 (y, -+ €, COS T) Myw2Byy;
Xy=(; — €, SInT) m078y; 4 (X, + €, 5In T) M3y

Xy ==(x; — e, sinT) m,w2, |- (X, €, 5in T) mye2,,,
where %5, 959, 8y, 0» are the compliances of the shaft. If we denote

e, cosT==9; e,cosT==",;
e sint=10;; e,sinT=40,;
My =y MRy

M0 gy == Mg} Mg0 28y = Moy,
then this system of equations can be written as

yi (g — 1) ny g, == — iy — Byng,;
Yl Yo (gy — 1) = — 15 — By,
X (R — 1) - Xpng == 01my; — Oyryy;

XMy~ Xy (Mgg — 1) = 0,721 — Gy1igy.



As can be seen, this system of equations contains two parts: the first two /7

equations contain only b2 and Yy while the last two contain only % and
X, .
=2

The determinant composed of coefficients of the unknown h2} and b2
(of the first two equations) is

Dy=(n1;—1)(nyy— 1) — oMty

The value of ¥y is the fraction

where Azl is a determinant which is obtained from the system's determinant

by replacing the first column by the column of free terms
Ayy= — By -+ Bn9) (1199 — 1) - (317215 Bortng) 11y,
and, consequently,

_— (my + 8angy) (19 — 1) + (e + Syng) gy

L’
1 (n;1— 1) (ngg — 1) — nyang;

Similarly,

Ayy= — (1 — 1) (D705 + Bortge) 4145 (B2, - By1251)
and

— ($1712 + Bonge) (myy — 1) + (317111 + Ygng1) Pyo

b= (ny; — 1) (ngg — 1) — mppngy

The determinant composed of coefficients of unknown %Xy and X, (of the

two last equations) is
D = (ny;—1)(ny— 1) — nyony=Dy;
Axy = (08,1113 — By71g1) (g — 1) — (8;7219 — Oy7130) iy,
hence we find in the same manner as above

__ (8371 — Bom91) (r122 — 1) — (87119 — Bgmg) iy

X
! (11— 1) (g — 1) — nyany

and, using the expression

Axy=(ry3— 1) (017115 — By7209) — (0,72 — Og7201) Ry,



11 i TUIL T n . J—

we get

. (Bamyg — banog) (n1y — 1) — (B ny — Bangg) ;g

Xo
(ngo —1)(ny; — 1) —nypny

From the deflection coordinates thus found we can obtain the deflec- /8
tions themselves

Q== ]«’,-’\? 4 yj and Q= ]/AS + 3

as well as the angles between the direction of deflections and the y axis

X1 Xo
tan@;=-— and tan @, =—"=,

Y1 y2

Let us now ask two questions: 1) is the elastic curve of the shaft
planar? 2) How do angles (,01 and P, vary with changes in the rpm?

If the elastic curve of the shaft is to be planar, then angles 21
and ?s must be equal, i.e., the ratios

X x.
Z ana X2
Y1 14

must be equal; representing this in terms of previously found values of
X and y

Xy (8ymyy — Bomgy) (ngg — 1) —= (817119 — Bgnog) My

g1 — (81 + 8ongy) (192 — 1) + (81719 + $onoo) nyy
and

Ko (Bymg—8origo) (my — 1) — (Byrery — Ozmo1) 713

yo  — (8ymg - Song) (g — 1) -+ (3y11y + Y9n9;) Mg

We first consider two cases: 1) if 27 = 0 and consequently r = 0,
i.e., if the eccentricities are codirectional away from the shaft, then

%, =e; and ¥, =e,,
and

6,=0 and 6,=0.



It can be seen from the expressions for x5 and X, that the numerators

become zero so that wl = 0 and wz = 0, since the denominators then are not

zero. Then also y; # 0, and Yo #0, since 8:1 # 0 and 82 # 0. As far

as Dx = Dy

when 11 # 11

# 0 is concerned, the expressions for these terms are finite

cr

When w = wc , D=

D= (ny— )y —1)—nyny =
= (mo? 3y, —1) (mgZ By — 1) — g2 Bigmgw? By ==
=wérm,m2 (P11Bgy — B1aBpy) — W2 (myBy + mydy) 4 1=0,

since the last expression is a periodic equation when written in the
standard form.

In analyzing the first case we see that when the eccentricities are
directed in the same direction, the elastic curve of the shaft will be
planar if

o Fw . and ¢1=0p,=0.

Since D - 1 as w > 0 and
remains greater than zero for
all the w < S then the

m
2
m critical angular velocity
‘1 .
w, . is smaller than the par-
t%al angular velocity wpart'
Since
Figure 2. The Shape of the Elastic ° . 1 ° . "
Curve of a Shaft Rotating at Suberit- Tpart™ mpdy Pt mgdon

ical Speed.

and further 0 < n

99 < 1 and 0 < nyq < 1 when #7n;,>>0 and ny >0,

then

1 >0 and g, >0.



Consequently, at w < W, p the elastic curve has a deflection in the di-

rection of the initial eccentricities (Fig. 2).

When the speed is raised by an infinitessimal increment above the
critical, the sign of the determinant will change to minus and therefore

the deflections >4 and Y will become negative (Fig. 3).

When @ > @ — ey and Yo T T ey (Fig. 4), since

— e1ny Mg — eaMpyTlyy + €1f11M2 + eaflg Ny
Mg — Ajgfing

Y= =_e2

and

— e\ny My — EallagNy) + e€1nygNay + eaftgaNy
Ny Mgy — Nyofiyy

h= = —e.

2) If the eccentricities are oppositely directed, so that
2t=mn; t=n/2,
from which
9, =0and¥,=0,andf; = €;and 0, =6y,

then, when w # w, > One obtains

X F0 =0 x,#0; yp=0 /20

and

|tan’ )| =] tan o,

==oo].

Under these conditions the elastic curve will lie in the plane of the
axis.

| 4

When w » «

x, = 1oy — eoftaglly) — €yy9Ma) + éongonyy
= n : ?

=el$
ny1ftag — Nyoliyy

o= Sifine — eaftagliyy — eynynyg -+ e9lig1Nyy
9 = ——— - T —_— 82.
Ny Ngg — Mg
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Figure 3. The Shape of the Figure L. Schematic of a

Flastic Curve of a Shaft Cantilevered Weightless

Rotating at Supercritical Elastic Shaft Carrying Two
Speed. Point Masses.

For small w (as compared with Yo and wpart) D >0, nynyg >nyn, and

the sign of X will depend on the sign of the expression

L]
8,121 1199 — BaMgplyy — 817211 - Ba72ay — By 7511015 OyMgaMin

in which, by collecting terms with 61 and factoring out 61, we get

By (12317199 — M1y — Mygin) + Bgly =
= &) (11,02, 028 gy — Mm%, — 1,078, my028y,) + €yy0%8y, =

== e; [0fmymy (3,89 — B1o%91)) + o g0%g) — eymy0?dyy.

Analysis of this expression shows that if we neglect m4 and divide the
expression by mz, we will find that the sign of % depends on the sign
of the expression e,mudy—e;m, 6.

Proceeding in the same manner, the sign of X, will depend on the sign
of

e,myla; — eyt By,
If w - 0, then

— 0yn1yy - Bongy
By + Bongp

—Bimg + Byngy —

fan 1@ = and tan 92(0) =~ 93019 - Bgngg



Returning to the initial notation, we get

mydey —
tan ¢; ) =tan T _eamydy; — eym ¥y,
e m 3y -1 egmade;
oMoty — 91'”1512,

tan 9o (o) =tan T
e1mbyp + eamalyy

We now find angles npl and <p2 for w >> wcr and for any angle 271

8172111199 — 8angang — B1m19n9; + Bongony,

tan ¢, =
31
— 11193 — Sangeny; + dinpangy + Sangengy
Bi(nunge—mnonyy) 8 esinT L.
— 81 (137190 — nygnay) 9 e1cosT
Consequently,
(Pl =T,

tan <. — — 01fnug — Oonyyngy — Bynyynyy - Bongymye

T2 =

— 81y 19 — Sanygngy + Yynyynge + Sang o

_ — 8 (nyngy—nynp) 8By essint

=tanT,

— &3 (ny1n9y — ngynpy) ¥  egcost

from which
Po=1T.

Comparing the expressions just obtained with those for tan spl and
tan 2 derived at low rpm, we see that the multiplier of tan ¢ in the

latter equation contains fractions not equal to unity. Consequently,
angles ¢ and 2 depend on the shaft rpm.

We shall now consider a system in resonance. If it is assumed that
the shaft resonance amplitude is limited by frictional forces and that
the resonance vibrations become steady if the system is operating in
vacuum, and, furthermore, assuming perfect (i.e., frictionless) bearings
we will have to assume that the amplitude will have to be limited by the
friction between the fibers of the shaft.

As is known from literature and as can be seen from one case of angle
2t = 0, when the system passes through the critical velocity, the direc-
tions of eccentricities relative to the elastic curve of the shaft shift




by the amount w. It is also known that at the critical velocity, the
phase shift is w/2 in the direction of the rotation; i.e., at the instant
when the system goes into resonance, the shaft is twisted about the axis
of the elastic curve. This also should happen in a system with any value
of 2t. In this case, since even at resonance the angle between the direc-
tions of eccentricities should remain 2t (we shall neglect the torsional
deformations of the shaft), the shaft of our system will be twisted so
that the directions of the eccentricities will form angles T with the y

axis.

From the expressions derived above for 91 and $y> We can write equa- /12
tions for w = w
cr
M= My,
B et L L
g1l — (& + Yanar)(nge — 1) + (3 nya + Sonzp) Ry

8; (713 g — Myn Mlay) — B3 (MaoMiay — Tiag iog) — By + Bomyy
—8; (117192 — 12 1131) + 89 (1panpy — nyy May) 48411y + Bangy

8y (1) ngs— Ryorer) — 81y + By
— &) (ryynga ~— nya nay) + ¥y nyp + Bany

We collect some terms of the numerator and denominator in parenthe-
ses, and reduce the expressions in parentheses to the form

D =(n,— Ny —1)— 1y =Ry Ny — Ripllyy — My — Mgy 4 1=0:

By (myy + Moo —1) — Oy + Bpnigyy

tan —;_;1 = _ —_ - —
— 9y (ng; + ngy — 1)+ Bynyy + Bony
il —N4bny o e (1p—1)+ e
—8; (g — 1)+ &y —e1(ny;—1) + epnoy
or
- _
tan @, = —tan T ('32 ,,l+e—2’221 :
ey (g — 1) — eonyy
tan = __(f_i'_) 817111y — Banyyfog — Bymyp + Oonton — Bymyymyg + Bonyo gy
J2¢cr- - _— - - = — = -~ = S
T Ay ler  —Yinungg —8omng + ¥y + Songy + iy ngp + Sonjang

—Ba(myy oy —yp ) — Bymyp + Bgmgy
— % (npy nga — nyg ) + By e + Ba ngy



__ —Fb (M + ngp— 1) — Bymyp + Ggﬁ—gg

— n _ =By —D—8my
— 8 (ny1 + ngpp— 1) + #1719 + 80y

—8(ny — 1)+ 8ynyp

ey (n;;— 1)+ en
Itan Goep=tan T 2(_” )+ ‘..-12.
e;(ny —1)—egnyp

We find the ratio
n\ =8Oy — g nyy) + 8y myy A Spmay
(!/2 ) T 8y (g —ya i) + Syryg + gmay .
=8 (e — 1)+ Yy 4 8omyy _ — By (g —1) +8ny
— 8 (117) + g9 —1) + So1120 + 119 —8,(ny— 1)+ 8np
__ey(mp—1)— egny
ey —1)—eqnyy”

Similarly,
(5_1_) _._ b gy —1)+8ymy, _ e3(nyp—1) + eonyy
cr

X — O (ny—1)—bymyy  ep(myy — 1)+ eyngy

When w - 0 and n > 0, and neglecting the product (Eik.n s), we find

(ﬁl_) - 811 + B37y __e1mbiy — epmaly

xp)o  —Bimp+ By eymybiy — eomodyy

(11_) S+ Sy ey + eymyly
valo  Sinpp+Smy e1mydya + epmadan

We shall now prove that the elastic curve of a shaft rotating at
critical speed is a planar curve. This is equivalent to the condition

that

tan q’lcr = tan (chr
or, if we use the previously obtained expressions for the tangents, to

e (@2 —~1)+ e2’§1 _2 (Eu —1)+ eryo
—e(ngy— 1)+ egnyy  ex(np—1)—enyp

We shall show that this equality really holds

10



[ex (rgy— 1)“‘32;21] [e; (’—1—11 —1)— 31’_1-12] ==
=[—e (7122 — 1)+ 32221] (e (_’zu — D+ 31;12]-

We remove the parentheses

3192311;22 — 3132;1-11 + eg’_zu;-lm —eeny+ €,8,—
- 65’721 - 9%522212 + e?’-llz - 3132;127’-21 = — elezzn—’zzz‘}'
+ elezﬁll + 33;1—1171-21 + exezzzz — 16— 63321 -
- 3%71227112 + e%-’—llz"i‘ ¢ 32-’21271-21-

Canceling out identical terms [of opposite sign], factoring out and
dividing through by eqe,, we satisfy ourselves that the remaining terms

add up to D = 0, and hence the difference in sign does not disprove the

identity of the expressions.

It is thus proven that the elastic curve of a shaft carrying two
eccentrically coupled point masses with differently directed eccentrici-
ties and rotating at critical speed is a planar curve.

A PERFECTLY ELASTIC WEIGHTLESS SHAFT
CARRYING AN ECCENTRICALLY COUPLED POINT MASS /1h
AND AN OBLIQUELY SEATED PERFECT THIN DISK

Let there be a weightless, elastic cantilevered shaft carrying a
point mass and an obliquely seated disk (Fig. 5). The directions of the
eccentricity and of the obliqueness form an angle 2T7.

The coordinate axes y and x are associated with the shaft, but in
such a manner that on rotation the y axis divides angle 2t into two equal
parts; i.e., the axis is parallel to the bisector of this angle.

We introduce the notation: m, - the point mass; =]

ity of this mass; o - the angle of skewness of the disk (a small quan-
tity); 62 - the equatorial moment of inertia of the disk mass.

- the eccentric-

If the skewness of the disk is expressed in terms of its shift
(from vertical) at radius r, then

a
tan @ = —
r

11



tﬁ A Figure 5. Schematic of a Canti-
! levered Weightless, Elastic
Shaft Carrying a Point Mass and
an Obliquely Seated Disk.

ks

Ry

The angles made by the skew disk with axes y and x are

acost
tan @, = =—=tand cos T;
asint .
and @, =———=tano sin T
r

or

Q=0 C0ST and a,=asinT,

We now write the equation of shaft deformations when the shaft /15
rotates at any w # W,
4= (gym w2 -} wem, cos T) By; - 0 (@ — @) 028y ; (1)
Ya== (gm0 w?en; os 1) By - 0y (ay — 9p) 028y (2)
@y=(grmy* |-, cos 1) &y 0, (0 — 9p) 028y (3

We introduce the notation

02y == 1;; mw?,=n,; esint=0;

8,028, == Mg; 0,070y, == 1yy; ecost="9,.
Then, Eqs. (1 ) and (3) form an independent system

Yy (g — 1) — @ty = — Dy — Qg
Yilyg— Py (g -+ 1)= — Hs3, — aynigy,

whose determinants are

12



D= —(ny; — V(g + 1)t nypng = — nyigy 4 gy — nyy - ngy + 15 /15
Ayy=A(n1gg 1) (B172y; F ayng)) — 1y (31710 Fayntgy) =
=8, (Ry1lgy — Mipftoy + 11y) + 0y (Roghoy — Mgl + 1g) =

=38, (ny17t9p — Nigllay - 111) F Oyltyy

and

Apy=(ry; — 1) (— Y7233 — @yitgy) + 1o (h7yy +ayny,) =
=710 4@y (1195 + R1oMy — N1 M)

Consequently,
Ay Ay
=L and@,=—=.
Y D ="y

The coordinate y., of the second equation is written in terms of b2
and @, in the form

Y=Yzt 017015+ Qylloy — Pyt
Setting up the equations of deformations in the x direction, we get

X =0, —0)) nnyy (0 —¥5) g3
W)= (x; — 0y) 7yp - (0, — W) 7g2;
Xg=(x; — 0y) g3+ (@ — W) a5

The first two of these equations form the system

xy(ny —1)—¥any = i1y — 0oy

Xy — Wy 1)==011p— M4,
the determinant of which is

D= —(n); — 1) (nyy+ 1) F 115121 == — nyfigy~+ Ryghyy — iy + Nop -+ L.

The determinant, as should have been expected, proves to be the same
as for the system of equations for deformations (Xl, )

AX = — By (Myyl1gy — Mgl + 11y) - @My /16
AW == —a, (nyfgy — Mygllay — Ngy) — 8171593
Ax . A‘Fg
(=21 qrzz_D_,

and

Xy=X 13— Tongy — By1115 -0 M.

13



We now seek the tangents of the angles of deflection of the shaft
sections as w =+ 0

X —6;n an
tan o, (o)___(_l) P Lo Bl e
n /o 810y + ayng

—esinT-md;; + @by sin 7-8y myedy; — a8y

j— = —tan T y
mye cosT-8;; + Ohacos T -8y myed;; + Boadgg
X, —esint-md3 + bhasint b
tan ¢, (0)&’ _i)= 1913 23 .
Ys ecost-myd;3+ 8pa cost-3g,

— — gt STl 0
- — tan - .
emdz + 620393

We shall find the direction angles of the deflections of the elas-
tic curve as w + «; here we shall drop all terms containing w raised to
the lowest powers

lim D= — nyny,+nyony,

&—>co

Him Ay, =8, (nyyn99 — o) -+ 0y (galtay — Mgghy,) ==

]
=3, (13 79y — ny131y);

. A 8; (nyyn9y — nyon
lim gy =4 — 1 (nyyngy — myp 2‘)=—81
AN — (n11ng0 — nyona;)
= —H=—ecosT,
lim Axy= — by (12,3729, — R1atyy),
- o0
. Ax —0(n ~ nyont
lim x, = "X — (r3y1tp0 ~— n119791) —8,
@ D — (nyingy — nigfiz)
X, ="b,==esint,
(O~ 00
fd |
tan @y(w)y=—=—tanT;
n
—ay{n;ngy —npngy)
P2(=)= =0y

—{ngyng — nyangy)

Let us consider the state of the system when it rotates at critical
velocity

D= —(n;;— 1) (nz2-F1) - 11y =0;

D= —nyng—nyshy —ny - nypy+1=0
or
Axjer — 8y (nqingy — nyongy + 1) + agny
tan;lcrz — i .t e
Ayjer #; (ny1n199 — nyomay + nyp) + ayng;

14



If in the parentheses of the numerator and denominator we reduce the /17
terms to D, then

— 03 (ngo + 1) + axng
81 (nge + 1) + ayng;’
X x1113 = Uollos — 631 [ 39 )
tan (‘Dacrz(-—s-) — *ums— Uottgg —Birig + Gxltys
Y3 /xp Y1113 — Pangs -+ $yn33 -+ Qynag

tan @, cr—

Multiplying the numerator and denominatoryby ch = 0, we get

Axn3—AUyn,
tan @y oy == 113 2fa3
Ayinz— Aggnyy

In this case, the third and fourth terms of the numerator and denomina-
tor become zero. Then

tan o, - 01 (M F 1)z = @emyinig — Oy (r11—1) g + 817219793
reer 8 (nag + 1) ny3 + agngyngz — ay (nyy -— 1) nog — $yngongg

If it is assumed that the elastic curve of a shaft rotating at
resonance speed is planar, then we must have

tan @) o, = tan P3 ¢y-

However, this expression will hold only when it will be proven that the
expressions in parentheses are proportional to the corresponding expres-
sions outside of parentheses, which means that we must prove

— 01 (g + 1) + ayxngy _ — 0 (1 —1) + 81749
$1 (g + 1) +aynyy  —ay(ny —1) =81

since

a __a+tka__a(l+k)

b b+kb  b(14k)

We change to a somewhat different expression

—esint-(ngp 1)+ asintm _ —asin T (ry—1)+-esinvt-ng
ecosT-(ng + 1)+ acost-ny —acost-(ny—1)—ecost Ny
Dividing through both sides of the expression by tan 1 and, cross multi- /18

plying, we get

[—e(ny+d Dtany] [ —alny—1)—eny|=

=[e(nay-+1)-Fanyl [—a(n,—1){eny).

We remove the parentheses

15



ea(nyy+1)(nyy— 1) (ngy+1) njy — a2 (nyy — 1) ny —aenpng = {18

=ea (nyy+ 1) (113, — 1)+ €2 (ng2 - 1) nyg— a2 (g — 1) 1 -+ ae12591:.

Cancelling out identical terms with opposite sign and dividing through
by e, we get

@ (g Moyt 1y — Ny — 1) —angyng =

= —a(nylgy+ny — Ny —1)F-anns.

Then, factoring out o and dividing through, we shall satisfy ourselves
that the remaining expressions are equal to D = 0, which proves that

tan 9y o, =tangy,

as well as the assertion that when the system rotates at resonance rpm,
the elastic curve of the shaft is a planar curve.

It is also possible to prove the validity of the Wiedler postulate
for systems more complex than those presented above, but this would only
involve more complicated calculations without changing the substance of
the argument. Thus, Wiedler's postulate, stated as a theorem, has been

proven.

In closing, we present two numerical examples which illustrate the
fundamental tenets of this article.

Example 1 (see Fig. 4). Given an elastic, weightless bar, carrying

two eccentrically coupled point masses my and m, (with eccentricities e

and 32) at an angle 21 from one another, find the critical speeds El and
EZ’ 91 and Pos construct the elastic curve at critical rpm, as well as
at w = 0 and w = ». The system data listed above are tabulated below:

Quantity | Iy ] EJ l | my I my T & ey
Value IA é ‘ 4 ‘_1 l ~3 ( 1——?‘~45°~' 2 l —4
The matrix of effect coefficients is /19
511 B2 % —239—
Y21 Ba2 ) 20 64
3 3

16



B

The equation of 2, the natural frequencies of the system,

Qi.3.1 (—8- -—%—@)——92 (3-—3—-{— 64)—{—1:0

33 9 3
or
88 3
Q4" g2 .
2= tip=o%
from which
1
1=55¢ @=0.19
and
3
Q%:T; 9, = 0,865,
When w > O

— By + Bomgr.

t 0) = .
200 $1111 =4 S2np)

Dividing by sin T = cos T and by 1/3, we find

ta ©) —2.3.8-4-4.1.20 1
n = —_—
P 2.3.8+4.1.20 4’
— 0 [i] —2.3-20+4-1-64
tan ¢y (0) = 1 + On90 + ~ 0,361;
81n12+32n22 2-3.20 +-4-1-64
(ﬂ) ~ b by =238 44120 o,
X9 Jw—+0 —01n12+627121 —2320—*—4'104

(), =t s, o,
Yo Jw—>0 817‘112 “+ 82’122 120 + 256~ ‘ )

We now determine the angles of deflection of the shaft's sections at

the first critical speed

ey (o —1) + eony

t = — t — = =
on frer T e1(ngy — 1) — egngy;
_ . 200.762—1)+4.0,238 _ 1
B 2(0,762 —1)—4-0,238 -3 '
- 6 1
Ngg == m2522w2r= 1. —31 . 58— =0,762;
— n 20 1
Moy == maﬁzlmérz 1l — - 0.238;

3 28
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- - 2 3
ng = ”llbnmcr——- .

0.286; /20

8
3
20 1o

3

ex (i — 1)+ emy _

er(my— 1) —emp
40,286 —1) +2:0.714 1

~ 1(0,286 —1)—2.0,714 3~

— a2
na= "’1"13“‘(:1‘: 3'

5]~ 2]

tan goop = tant

From the fact that angles ¢. and p, are equal, we can conclude that

1
the elastic curve of the shaft is planar

&) ey — 1) —egny  2(0.-762—1)—4.0,28 1,
(\P:Z,Cr"eg(ﬁl,—u—eﬁm“ 4(0.286 —1)—2.0.714 3
n) __atuoDiemn 20700 L
(;,cr=—gz,a,_1)+ern,2=_ 4(0,286 —1) +2.0.714 3 °

We now find the projections of the shaft's deflections at w > «

—$hiniingg —Sonpintyy + Yynpongy + Sangeny;

Yie™ nyngy — nyghay
ny1Nay — Mot }/2—
=9, 2B §e rcost=—21" =—1414
nyifigy — Nyoftgy 2
v o Samunrier — O9moontar — B1mignay + Bonaonay
1o =

nyyngg — MyaNyy
=0, =¢;sint=1,414;
_ —hnpne—Sonningy + Sy + Sonppnyy

—_ 82=

Y2
Ty1fign — Ny2figg

=-—eycosT=—2828;
Bymi1mmio — Bpmianieg — Oaityyg + Bompomy;

ny1ftgg — Nyofay
= —fy == — gy sin v ===0,828,

Example 2 (see Fig. 5). Given an elastic weightless bar, carrying

one eccentrically coupled point mass my with eccentricity e and one

ideal disk with moment of inertia 62 and skewness angle o, the angle be-

tween the direction of the eccentricity and the direction of skewness
being 2a, find the critical speed and the coordinates of deflections for

w _, w=0and w > =,
cr

Quantity, L 1y EJ l my by 2t a e

Value l? 4,1!2 3 90"‘0.1,2

18



The matrix of effect coefficients is
1 b12 8/3 2

a1 bog 2 4

The equation for the frequency of direct synchronous precession is

8
_'_94.2.3(—2—4—4)-92 (2- ?——3-4)4- 1==0

or
1 1
Qt—— Q2 . —0;
6 40
o 1 11 12145
=2V mt T 12
Q= 0,512,
When w - 0

tan ¢; (0) = —tan ¢ _”i@u:ﬂz@i

mleE” -+ 020.621

2.2. —3-0,1.2

2.2.

= —0,895;

oo oo

+3-0,1.2

20
emidiz — Boad 2'2‘_3__3'0'1'8
tan ¢3(0) = —tan 7. L 12 n P > = — 0,835,
erni03 20093
2.2.— 4+ 3.0,1-
3 + 8

The angle of deflection of the elastic curve when the shaft rotates
at critical rpm is

— 81 (nge—1) + a,ny = —tant. ® (ngp—1)—any _
$1 (nge —1) + aynyy e (ngg — 1) 4 any
2(3.14—1)—0,1.1,57

92(3,14—1) -+ 0,1-1,57

Tgg = 052289y = 3.0,262-4 = 3,14;

Nngp = 6292521 = 3‘0.262'2 = 1.57.

tan Per =

=0, 93;

- The tangent of the angle of displacement of the second angle is not
calculated, since the equality of these angles was proven in the general
case.

19



THE OPTIMUM HYDRAULIC DAMPING MOUNT FOR A TURBINE ROTOR

Candidate of Technical Sciences K. A. Kryukov

Modern turbine engines used in transportation evolve toward higher 122
rpm and greater rpm range, as well as lower weight. The weight reduc-
tions usually result in lower rigidity which in turn increases the number
of natural vibration modes which must be considered in the design. All
this results in the fact that, very frequently, the proper selection of
compliances of the elements of the system does not completely shift the
resonance rpm beyond the range of the operating speeds. Under these con-
ditions, safe operation at critical or near—critical rpm, as well as
transition through these operating modes, is possible only with use of
special damping devices[l, 6]. One of the most effective means for
reducing the deflections of turbomachine shafts operating at critical rpm
is employment of hydraulic damping mounts [5, T7].

Reference [5] deals with forced vibrations of a single~wheel rotor
with a damper, when both the perturbing force and the damper are located
in the same section. In this case the elastic curve of the shaft will
lie in a single plane. In our case, the points of application of the per-
turbing force and of the frictional force are not the same and, conse-
quently, the elastic curve of the shaft will be a spatial curve. If we
neglect the deformation of the shaft in the direction of the frictional
force, then, by increasing the damping resistance factor in the expres-
sion for the deflection of the shaft to infinity, it is possible to
reduce this deflection to zero. On the other hand, if one takes into
account the shaft's deflection in two mutually perpendicular directions,
it follows from the equation of the shaft's deflection that the smallest
deflection will occur at some optimum damping resistance factor, but that
in all the other cases the amplitude of the shaft's deflection will be
larger.

We shall derive and analyze the expressions for the critical shaft
rpm by taking into account the deformation in the direction of the fric-
tional force, the dynamic intensification factor, the deflection, the
angles of displacement of the deflections relative to the perturbing
force, the unbalance force, the stresses in the shaft, and other parame-
ters. We shall also discuss the operation of a hydraulic damping mount
and shall give alternate methods for selecting optimum parameters when
the oil temperature increases. Finally, we shall examine the conditions
under which deformation in the direction of the frictional force can be
neglected.

The magnitude of the required damping resistance factor can be

established from the tolerable deflection and stresses in the shaft and
the magnitude of the unbalance force.

20



7 2 5 Figure 1 shows
a cantilever system
e = with one disk of mass
yr e "§ ' m. The shaft is
7 " 1 supported at point 2
: by a hydraulic damp-
Prose ing mount with a com~

pliance of §, = s

I3
: 02 ~ “02°
__fsﬂ"f””’:; The deflections at
A
/—_——

e
'
i
b

F-LozAzz points 2 and 3 in
the direction of axis
x Oy are denoted by A*
27 and A*, respectively,
while those in the 0z
directions are denoted
Figure 1. Computational Schematic. A _and A . We are
—z2 ~z
considering steady-state motion. It is also assumed that at time + = 0,
point 3 of the shaft is on Oy; i.e., that éz = 0.

We now determine the displacement of point 2 in the 0z direction.
The equation of equilibrium for forces applied at point 2 requires that

F,=(Coy+Cx) Ay (1

where 922 = 6;% is the transverse stiffness of the shaft at point 2.

It follows from Fig. 2 that

— = — 1
byy=np—+(0k—np) _(lsz’z)..’ 2)

where
0k=8Q, a~d np=3,Q,. 3)

Here, Ei and gé are the displacements of points 1 and 3 of the shaft

clamped at point 2, upon application of unit force at points 1 and 3,
respectively.

Substituting Eq. (3) into Eq. (2) and making use of the fact that

4
L1’

12
Q =3 and =
1 1, 4 A Qa

we find
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rab:y 5 Byl3 -+ Byl (4)

Z n TR
L——k

P We now consider the case of vis-
< ay cous friction, when

L-————-L’————-r

Fy =%0A,, and FZ=E(0A;, (5)
Figure 2. Schematic for De-

termining the Compliance of \ ,
the Shaft in the Qz direction. where w is the angular velocity of the

vector of perturbing force P (which is
identical to the angular velocity of
the shaft provided that P is produced
by disk imbalance), and £ is the viscous friction coefficient.

Substituting expressions (4) and (5) into Eq. (1), we find

— (6
tan CLZ:;;'L =:—:—f2=—:a18w, )
z 2
where
. 7
a1==Em-; (7
Coz
S _ L
392 + B0o . 3
5
3,281 Tg"‘l'ﬁz,

ar I3 \?
B= (142 20y

2
— @y==—a—,
oy ’ ! {mb

Here 2 represents the ratio of the frictional force to the restoring
force exerted by the mount at w = wl; 8§ and §' are the compliances of

the system at point 2, when supported by a compliant or a perfectly
rigid mount, respectively, Eq. (14); and wy is the natural frequency of
the system at £ = 0.

Using Eq. (7), we can write

1+ Q1 +H2%

where

'5022 302 andl_zL?_
i 1
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S

\
- -\_
L=7:>\ T NN
0 05 7 7.5 2 25 3335 10 = &,

z
!

0% 03 0z 01 0 &,

Figure 3. Parameter § as Function of the Sup-
port Compliance and the Ratio I = lg/ll.

51862) for different I. It can be seen

Figure 3 shows curves of &

that & varies from 8 = 1 at 602 0 to 8 =0 at 602 = o, For a shaft

with constant cross section

3
s B b+l
V""" 35 * 7T 387 " 3EJ ?
2 42
- 1212

3= , ,
P12+ 3ET () + L) by

As can be seen from this expression, 8 = 0 when I{ =0or Iy =0.

Examining Eq. (7) we find that the ratio of the natural frequencies
with and without consideration of the mount compliance is

o =2V, 9

|

where o/ = is the natural frequency of the system supported by a

=V
perfectly rigid mount.

The graph of function w' is presented in Fig. 6 and holds for all
values of §_, and 1 with the exception of the case when l9 = 0. In that

02
case, according to Eq. (7), 8' = 0 and
-1 (10)
RS

23



24

From Fig. 6 we note that a hydraulic mount sharply reduces the natural /26
frequency of the system, particularly in the region of small §
Returning to Eq. (6) we note that ratio ézz/ég is proportional to

quantities &, w and S. When the perturbing and frictional forces are
applied at the same point (12 = 0, § = 0) there will be no deflection in

the z direction and the elastic curve of the shaft will lie in a single
plane. 1In all the other cases (5§ # 0), the elastic curve will be a space
curve.

Let us now determine the displacement A* of point 3 (see Fig. 1).
The equation of force equilibrium in point 3 is

(C*—mw?) A*=Pcosa. (11

where &% = Q?_i is the compliance of the system at point 3, assuming ex-
istence of friction force EZ.

When point 2 is deflected in the direction of the axis, there arise

- % . -
the restoring force C —02A2 and friction force Eyf directed oppositely to

displacement A%; i.e.,
Q= CozA; + Fy.
Using Egqs. (6) and (7) we write
Q="CoyA3(1 +alb o?).

From this the compliance of the hydraulic damper system in the y direc-
tion is

309 (12)

270, 1 +a3
Turning to the schematic shown in Fig. 4, we write

=00+ cd+df=0b-}1ltand|3,.

Substituting in this expression the quantities



SRS A

ol

<

& "’f a:
—

g

e

Z;

Figure 4. Schematic for De-
termining the Compliance of
the System in the y
Direction.

and after the necessary transformations,
we find an expression for the compliance
of the systems at point 3.

R P (1) (13
3?‘—7;'01‘{'82‘*"‘ Taoz
1

or, when £ = 0 (a = 0):

« +1 2 (14)
1—-[-—3 + : 2) 02.

Making use of the above expression and of Eq. (12), we represent Eq.

(13) as

3=

Introducing the notation

5 (1 —al3%%?) (14a)

1
&'T 1+a Ta2

® s and @ == s
& m Wy
we find from Eq. (l4a) at w w* that
1
L +3ws 15
~_ 1+a16w1 a?
[ — .
1 1 2"?. -
+ a; 820 J?,+§}?
2
We write this as
a5 4 (1 — alB)w? — 1 =0. (16)
The real root of this expression is
Sy e—ee— oI 17
_ V=@ s @ — (1t a7
R
or
(18)

a-)/ YL

1— a?a 3)2 + 4a2a0 203 B2 —(1 "“12‘10 3)

.

2a2a0 32

Here a=a,/apy=t/E, —1is the ratio of the damping factor to £y, which is its
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6‘;’ I ~ ] optimum value [as given /27
/ Egqs. (36) and (38)].
- :j — Restricting our- /28
| S selves to two terms of
) L —— the binomial expansion of
B ,)v_ N / the radicand, we get an
2 T 7
/ g/_’l- approximate expression
yyar e for By:
— AL i I ~
/ g —T ] o, =~ 140.5¢;8. (19)
7 - 51!_7,_7 — N N _ . . —_
0z 04 Q6 08 1 272 253335 10 =@ This yields values of by
e LD
Q5 q¥ 03 g2 41 0a’ which are somewhat high,
but it is sufficiently
accurate for determining
Figure 5. The Critical Speed as a Function these values at small 2
of The Relative Damping Resistance Factor and §.

and of Parameter §.

We shall now clarify the effect of the damping resistance factor &

on Bl. Figure 5 presents curves of El = ?El(:a_) for some §. Values of

El vary from 1 when a = 0 (£ = 0), smoothly increasing with an increase

in Eand asymptotically approaching the values

‘:1 2 (o);:_w;) as a— oo.

The physical meaning of this is that when the damping resistance increases
to infinity, the mount becomes immovable and the natural frequency of the
system becomes equal to its natural frequency when placed on an uncom-
pliant support. Note that 'u_)l increases with a at a higher rate in the
case of smaller §.

We now write an equation of moments about point O (see Fig. 1) /29
ArF,+ AuFy=AsPsina.
Using Egs. (5) and (6), we write this as

At? o (20)
Eo —,:2_ (14-a2320?) A*=Psina.

According to Fig. 4,

Ay 06 vo(1+47)

a 3
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Using Eqs. (12) and (l4a), we write

Ay (14D (21)

A o(1+dlveay

Substituting the above into Eq. (20) and taking note of Eq. (7), we
write

o=t Bed” =Psina. (22)
6(1+a 624.»2)2
Squaring Eqs. (22) and (11) and then adding them, we find
201 _FTVo
[(C*_mw2)2+ a:é:_ aﬁ)g%)T] A2=p2,
from which, using Eq. (14) and assuming that P = Egpz, we find
At=el\", (23)

where e is the eccentricity or displacements of the center of mass of
the disk relative to the centers of the bearings at w = 0, and

3 (l +a1 2w2)w2 (24)

V-2 +adsm(1—1 )" +a}(1—s) a2

or

(1 + a%; ?ﬂw?) w? (24a)
x'—~ : : o Lo

[1 ;-wjl + a~aobw’2( 1 —-umi’)] -{—a?a (1——6)20)2

For convenience in subsequent analysis, we now present the two above ex-
pressions as

. (25)
—j{—i—a‘ib?
A= L= —
/ ! ! af 1 = al(l—“b)2
| [if ;~+“1°(5“ )J+ P
(26)
(—‘T‘rmm?)
W=

T == (1—5)2<.>2
V[ 2 ﬁu)?(l—ﬁm?)} Y

1 1

*
When w = wy s the expression in square brackets in the denominator of

27
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Eq. (24) becomes zero according to Eq. (16), and then A* is

_(—aER)s @7)
W= a;(1—3)
or, according to Eq. (15)
14 a??u_)? (28)

t_____________
£ (1=3) g
It is more convenient to write the last expression as

.1 +Z?ag—b‘t—o? (29)
M= " Daager

The quantity A* is the dynamic intensification factor, showing the number
of times by which the shaft deflection at the point of disk location ex-
ceeds the eccentricity. As follows from Eqs. (24) and (25), A* varies

%
from 0 at w = 0 to 1 at w = «; when w = Wy A% takes on the value Ai’é.
Figure 8 shows graphs of A% = A% (0) for several values of E at § =
0.23 (see the example below). Turning to curves of Figs. 5 and 8, we
note that the magnitudes of A¥ at small a are virtually identical with

k
the maximum dynamic load factor AT’;, while Wy o W, = 1 (see Fig. 5). For
large @ the divergence between Aﬁmand )\;“1 (as well as between the Uk and
Em corresponding to them) becomes appreZiable. For example, at & =1
Fi . * = . w = . f* = . T =
(Fig. 8) X_nl 1.67 for mE 1.9 and )\E 1.245 when uu~1£ 1.273.
When T = 0 (§ = 0), we get instead of Eq. (24)
) ~
Moom ey o 5L (30)
l—o
* w? -
7\E=0=§T_-—1‘ for (')> 1.
When a =  (§ = «), we find from Eq. (26)
ha? - . 31
VL M e (L)
1—%w
S o
)‘E-=°° = T_Bw_“‘ for (1)> 6_0'5.
Sw—1

When I = 0, 6 = 0 according to Eq. (7), and

-

N
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while when w = Wy (w = 1)

)\:= al—l_ €c

where §.=2)/Cpom — is the critical damping factor. When & > g, the

free vibrations become an aperiodic limiting motion [3].

Note_ that irrespective of the magnitude of the relative damping re-
sistance a, the curves of A* (Fig. 8) pass through a point with coordi-
nates wyq and Afl. Equating Eqs. (30) and (31) and making use of the

fact that l1<e;<6%% we find

_ -3 (32)
I 2

Substituting this value into Egs. (30) and (31), we get

)
—3°
It follows from curves of Eqs. (32) and (33) (Fig. 6) that, as § is made
smaller, wyq increases infinitely while Ail tends to unity.

It is easy to see from Egqs. (30) and (31) that A* goes to infinity

when w = 1 and w = E;”'S, respectively. Consequently, when £ = 0 and
£ = =, the damper in the mount does not operate. Indeed, the natural
damping, which we have not taken into account, and which always exists
in the engine system, causes large, although finite, shaft deflections.
For example, rotors supported on rolling-contact bearings exhibit load
factors on resonance which may range from 30 to 100 [6]. Operation at
resonance rpm can, at worst, result in destruction of the rotor or the
bearings, and in complete failure of the engine.

We shall now determine the value of parameter 2 = 25 for which
kﬁ will be at minimum. Taking the derivative in Eq. (28) with respect

t6 5 and equating the expression thus obtained to zero, we get

dey - - (34)
(dl ﬁ— m_l) (a? u)?g—- 1) =0

(1—3)aZal
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- Differentiating Eq. (16) and per-

) e -
® - - forming the necessary transforma-
o} w0 100 }a.01 i
gzl s u g:oz tions, we get
i
4 .04 — P o)
o 2 20 “005 doy __ Baror (1—20])
’ =t 1y

78 ‘\ ] day  1—1ta? (2078 —1)

15 AN N . s .

3 \<%u_’ After substituting this expres-

i L sion into Eq. (34), we obtain
—_ ¥ ~

@
0 \5 0 (1+ ) (32 —1)

v =i =D [+ ()]
as / ' 16 i
04 P —1s . . .
. I The real root of this equation is
9z ; / z
. Anm T
P YR Py YR a,=a,=uy 50, (35)
. . . - 1
Figure 6. Quantities a, Wy, w.]:l,
* % ;
>\ll and Al‘. As a Function of §.
which quantity will, by means of Eq. (17), be written as
_ 143 (36)
ao— e
2%
or, using Egqs. (7) and (8), as
' ) (37)
a,=1/ 1405 (1+i2—)-%.
[1 a,
The optimum damper resistance, according to Eq. (7), is
_ (38)
° 6020)1
Substituting Eq. (36) into Eq. (28), we get
(39)

A ___21/5_ _ 2V1+(1 + %02
T3 (1+1) 80y

Figure 6 shows graphs of 2, and Al"’éo as a function of §. It follows

from these graphs that at small s, XI’;O and )\’il are small. When § in-

creases (E > 0.7), the values of Aféo and Afl increase sharply; i.e., the
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damper's operation becomes ineffective. The values of Afl differ from /33

* <. e o, *
those of AkO only at small §; for 8§ > 0.4, the values of Ail and AkO

virtually ‘coincide. B

The deflection at the point where the disk is located corresponding
to that given by Eq. (39) is, according to expression (23),

2 V5. (40)

1—3

*

*
A= €=

Upon dividing Eq. (29) by Eq. (39) and using Eq. (35), we find that

Amle_ 1Ha% (1)
OKO 2a ;l ’
where
L W S S
[21) Eo 0 wy
There, A shows by how many times the shaft deflection éﬁ at the point of /34

disk location is larger than éﬁo when a # 1. Equation (41) is plotted in

Fig. 7 for some values of §. Note that for small E} A is more sensitive
to changes in the relative damping resistance factor a. When a deviates
from unity, A increases (more so at small a).

Above, we have derived expressions for the deflections at points 2
and 3, taking into account the deformation in the z direction. If this
deformation is neglected, Egs. (23) and (24) simplify to

Ag=el, (42)
where
A= o?
Vi—-a1a(1—3)2e
if
w=u, (43)
1 Co2

A

o (1—3)  te (1—8)

The quantity

T AN 1+d% (44)
Ax Ak ‘—‘-'l ’
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shows how many times Aﬁ of Eq. (28) (where deflection in the z directiom /34
was taken into account) is greater than ék (deflection neglected). It

allows us to estimate the error which is introduced by neglecting this
deflection. As follows from Eq. (44) and curves of Fig. 7, at small
values of a this error is not appreciable and, conversely, when a is large
(a > 1), the error is very large, particularly at small §.

The deformation of the hydraulic damping mount (point 2 of Fig. 1)
in the y direction is found from Eqs. (7) and (21)

Al (A4DpA” _ (1—ear*
PR+t T Q4+ D(1+eh%?)

With reference to Eqs. (24) and (25), we write

. e(1—1)o?
(1+7)V[1-—m +a wﬂ(l_m)] ra(1—1)% <J

The total deformation at point 2, according to Eqs. (6) and (24), is /36

r2—1/4 4,2—A2V1+(115 W’ =ehs, (45)

where
- (1—3)» . (45a)
(4D V14ah%?
1—6)_2]/1+a262 w?
BTN ]/[1 —o’+a%te® (1 + 657)] +a2(1 —5)2 )2

or

(1—9)&V1+2%a 3% (46)
T u+nV[i—ete aoéuﬂ(l — Smﬁ)]? +a%2 (1 — %2

Equation (45a) can also be written as

. ‘ (1) l/ (47)

——— -
(D) )/ [——+w(l )]1“;—2’2‘7’2
1
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when

o—uy (3=2,) (48)
. 52 2
)c "’IV 1 -J-azﬁz 2 l/ +
E (14D g 141

If £ » o (§1 + =), then, according to Eq. (47) Xﬁ +~ 0 for all w,

except for w = Z& = 6—0.5. In this last case, according to Eq. (48), we
have

o1 (49)
k2 l+l_..

This value applies to all curves X§ = X§ (E) irrespective of the value of
parameter a; this is easy to see by substituting w = §-0.5 into Eq. (L6).

. Graphs of Eq. (46) are presented in Fig. 9 for some values of é:for
d = 0.23. It can be seen that deflection of the elastic damper support
(Fig. 9) are appreciably smaller than deflections at the point of the
disk location (Fig. 8). When a > 1, A% increases, going to infinity as

a - », This does not happen to Ag. When a increases (& > 1), the value

of A§ decreases further. At §:= 0, the values of Ag do not exceed the

limits of the curve of Eq. (46); in this case, this equation becomes

s (l——-B)m
" U—l—l)!l-—m

The total frictional force, according to Eqs. (5), (44) and (46), is
F =tor, = eaa,Coho= (50)
eaay Cor(1—3)&% 11 + a2 alb%e?
TUD VR PR (3 P Ay

The unbalance force which is transmitted to the aircraft structure and
which produces vibrations in the latter, can be expressed as

R=)/riC% + F2—eCops }/ 1 4-a%ajo2. (51)

or, using the dimensionless form of Eq. (45a)
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Figure 7. Curves of A and A as Functions of the Damper Resistance and Parameter §.
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Figure 8. The Dynamic Intensification Factor of Shaft De-
flection at the Point of Location of the Disk as a Function
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Figure 9. The Dynamic Intensification of the Support De-
flection, as a Function of the Frequency and Magnitude of
the Damper Resistance.
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p__R_(LtZ.)___—_ (52)
" eCoe(1—1)

V([ +aape) (1 +a%a’)
=—17[1—52+32a3582 (1—5«)] ja az(l—B

)22

We write this expression as

2 l/ + a062m ( ~_:I—a§B;) (3

V5w in] + o

The flexural stress in the transverse section of the shaft above the
elastic damping support is given by

) 7 F S ——

M

_ertly (54)
= w
where nD3 d4
W= 22 (I—B—),and

D and d are the outside and inside diameters of the shaft.

With reference to Eqs. (14a) and (24a), we write Eq. (54) in the
following dimensionelss form

. o 2(l-ra‘zaoam) ] (55)

a UBW .
812 V[l_w2+aa Ou)z(l—-ou))] +0202(1——b)22

or
—2( +a26m2) (56)

= - - R

l/ ll— +a06w2(1——6m ):l —i—az(l-—b)r2

Setting a = 0 in Eqs. (53) and (55), and a = = in Eqs. (53) and (56), and
with reference to Egqs. (30) and (31), we can write

— - . 57
Ri—o=0t—o=XA—0; 57)
E-cn

E—m'::anw: =
3 £ 3

Figures 10 and 11 are curves of R and 0 as a function of w for several
values of a at S = 0.23 (see example) A1l the curves of B. E_(w),
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Pigure 10. The Unbalance Force as a Function of the Fre-
quency and Magnitude of the Damping Resistance.

irrespective of the value of &, intersect in one point, the coordinates /40
of which are

- Y (58)

_ It is not difficult to show that at w increasing infinitely, E and
o tend (dirrespective of the value of @) in the limit to

with the exception of the case where a = 0. In this last case, when
0 > ©, we will have

R;0=0;-0=1.

Turning to curves of Fig. 11, it can be seen that in the region of w
ranging from zero to W = Eiz, the friction in the mount has a favorable

effect on the magnitude of the unbalance force and of the stress in the
shaft by appreciably reducing them. On the other hand, in the region of
angular velocities larger than mlz, the friction in the mount is an
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Figure 11. The Stress in the Shaft as a Function of the
Frequency and the Magnitude of the Damping Resistance.

unfavorable factor, since it increases the unbalance force which is trans-

mitted to the aircraft structure, as well as the stress in the shaft.

It follows from Egs. (51) and (54), as well as ‘from graphs of Figs.
10 and 11 that the use of a hydraulic damper reduces the unbalance force
and stresses in the shaft, both because it increases the compliance §,
and because it affords the possibility of shifting the critical speed
past the limits of the operating rpm.

Dividing Eq. (22) by Eq. (11) and using Eq. (l4a), we get an expres-
sion for angle a (see Fig. 1)

—9e (59)
tan g = ad (1 E)m
1—w? + a; el (1— )
or
tan a— aag(l——g)w

—wit+a a05w2 (1 —b(o)

Equation (59) can also be written as

a; (1—13)

t = .
ma 1 - 2572 2
—w-+tajde (l—bm)

[5)

Tt follows that angle o varies from O to 7 when w goes from 0 to ». At
the critical angular speed (w = w¥), o = /2. For a system without
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damping (; = 0) o = 0; the vector of the perturbing force has the same /41
direction as the displacement (see Fig. 1). Figure 12 presents graphs
of o = a(w) for different values of a at 6§ = 0.23.

The following are the decisive factors which need to be considered
in estimating the danger to a turbine operating at or mnear critical rpm:
shaft deflection, stresses in the shaft, and the magnitude of the unbal-
ance force. 1In each specific case, one or another of these factors can
dominate, Let us consider them in detail.

The maximum permissible shaft deflection should be less than the
operating clearance between the rotor and the housing (in order to elim-
inate the possibility of bumping and breaking of blades, labyrinth seals,
etc). The possibility of failure in this case can be eliminated by in-
creasing the radial clearance. However, this step, as is well known,
would reduce the turbine efficiency. The tolerable increase in the shaft
deflection available in this case is limited by the strength of the shaft,
and is governed by the flexural stress produced when operating at critical
rpm. This stress, combined with other stresses in the shaft, can exceed
the yield strength and even the ultimate strength of the material, which
would result in a residual strain of the shaft and to failure of the en-
tire structure.

Great difficulties in aircraft and automotive gas turbine power
plants are frequently brought about by excessive vibrations of the struc-
tural elements of these vehicles, which are due to unbalance forces or
moments in the engine. Excessive vibrations can result in fatigue fail-
ure of aircraft parts, as well as cause premature tiredness of the crew
and disturb the operation of aircraft instruments.

The reliability of aircraft and automotive gas turbine power plants
is frequently rated in terms of the so-called vibration overload factor,
which is the ratio of the maximum acceleration of a specific point of the
engine housing (in case of vibrations) to the acceleration of gravity.
Some values of the permissible vibration overload for various gas turbine
engines are presented in [2].

The vibration overload factor, as well as the load on the bearings
increases with the unbalance force. The vibration overload of an oper-
ating engine is determined by means of special instruments [1].

As follows from Egs. {24), (51) and (54), all the factors which de-~
termine the reliability of a turbonachine are proportional to the eccen~
tricity of the wheel. 1In a broader sense of the word, the term eccen-~
tricity should be understood to denote not only a displacement of the
center of mass of the wheel to correspond with the imbalance not elimi-
nated by dynamic balancing of the rotor, but also the increase in eccen-
tricity brought about by design and production factors.

Depending on the precision with which the wheel, the shaft, the
bearings, the housing, etc., have been manufactured and installed, as
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Figure 12. Phase Shift between the Force and Displacement
as a Factor of the Frequency and of the Magnitude of Damp-
ing Resistance.

as well as depending on the size of clearances in the bearings, the ec-
centricity may vary over a wide range; i.e., from several thousandths to
tenths of a millimeter and even to 1 millimeter (as, for example, in units
for tensile testing of disks [6]). The eccentricity in some cases can
also increase appreciably with time during operation due to, for example,
nonuniform creep of gas turbine wheels and blades and, in particular, on
partial or complete rupture of blades. It follows from the above that the
eccentricity can be estimated only approximately.

It also follows from the above that the vibrational stability of
turbomachines depends to a large extent on the quality of manufacture and
that in some, but by far not all, cases tightening the production speci-
fications and assembly precision can eliminate the above defects.

In those cases when the critical speed is in the range of operating
rpm and when the system itself does not provide sufficient damping to
eliminate dangerous deflections of the shaft, the vibration of the power
plant and the possibility of engine failure, it must be equipped with a
damper. As was shown by our analysis, the use of a hydraulic damper
eliminates danger at critical rpm. This can be achieved by shifting the
critical speed beyond the operating range, as well as by reducing the de-
flections, stresses, and the unbalance force to safe limits.
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As was pointed out above, shifting the critical speed_and reduction
of the deflections depends to a great extent on parameter § and the more
so, the smaller the § (see Fig. 6). In automotive and aircraft engines,
however, if § is small; i.e., the system has large compliance. There is
the danger that the rotor will rub against the stator. This happens in
aircraft engines at overloads which arise during acrobatics or on landing,
and in automotive engines when riding on bumpy roads.

The excessive deflections of hydraulic dampers of a shaft and bump-
ing of the rotor against the housing, which are possible under those cir-
cumstances, can be eliminated by installing rigid supports which limit
the rotor displacement. The presence of friction in this case will have
a favorable effect, softening the bumping into the limiters and aiding in
rapid damping of the free vibrations. In this case, the damping character-
istic of the system will not be linear. At some deflections the elastic
element of the damper will be compressed up to the stops. Then the stiff-
ness of the system will increase and will be equal to the stiffness of a
shaft supported by uncompliant supports; the natural frequency co the
system increases, the resonance conditions change; the resonance deflec-
tion of the shaft will be smaller than in the case of a system with
linear characteristic. A detailed study of the operation of nonlinear
dampers is presented in [1]. :

As follows from Egs. (7) and (8) and from the graph of Fig. 3, § de-
pends on the geometric and damping properties of the system, which are
governed by 11, éQ’ §' and 602. The first three of these quantities are

selected from strength and design considerations. For example, in gas
turbine engines dimension 11 is determined by the type and length of the

combustion chamber and of the compressor, the location of supports, etc.
DimensionL2 is determined by the thickness of the wheel, the manner in

which it is seated on the shaft, type of bearing, gas and oil lubricated
seals, etc. From strength considerations it is desirable that dimension
}Q be as small as possible. Changing of shaft diameters and lengths in-

volves quite complicated and expensive modifications, which may increase
its weight. All this requires that one forego varying 11, lﬂ and §', and
obtain the required § by providing the necessary mount compliance 602.
The latter quantity can be easily changed by introducing an elastic ele-
ment into the mount, and can be accomplished without extensive redesign-
ing.

It should be noted that for systems with many wheels, unlike the
system with one degree of freedom which was considered here, the compli-
ance of the hydraulic damping mount should be selected so that not only
the first, but also the second, third, etc., critical speeds be suffi-
ciently removed from the operating rpm range [8]. However, this cannot
always be achieved. Then dangerous shaft deflections under critical
speed conditions can be eliminated by appropriate selection of the damp-
ing resistance factor, the magnitude of which should be established
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separately for each case.

In those cases when the critical speed is in the range of operating /44

rpm and the predominant factor in safe operation of the given machine is
minimum shaft deflection, it is necessary to select an optimum damping

~ resistance factor (£ = & . and g = 1. However, these conditions fre~-

quently cannot be maintained since the viscosity of the oil drops sharply
as the temperature increases [6].

The most suitable damping substances are silicone fluids, the vis- /45
cosity of which varies little with temperature. However, these fluids
are not too suitable as lubricants, which makes it necessary to maintain
two separate systems, one for bearing lubrication and the other for sup-
plying the damper. This complicates the design, so that usually one
employs the simplest solution whereby damping is produced by the same oil
as that used for bearing lubrication. In this case, however, the damping
resistance factor can change appreciably due to change in viscosity as
the o0il heats up during operation. Turning to curves of Fig. 7, we note
that this shortcoming can be appreciably alleviated by proper selection
of a, the relative damping factor.

In fact, if we select a value of a = a, slightly larger than unity
at conditions corresponding to the minimum 0il temperature possible with
a given machine, then on subsequent heating of the oil and reduction in
the damping resistance; i.e., on moving to the left of the selected point
a, the dynamic intensification factor will change, first decreasing to
A =1 at a =1 and then increasing at a < 1. By proper selection of a,

> 1, it is possible to obtain a situation whereby the change in the inten-
sification factor, accompanying the heating of the 0il will be minimum.

We shall clarify this by means of the following example. Examining
the curve for 6 = 0.3 (Fig. 7), we note that when, for example, the damp-
ing resistance factor is reduced by a factor of four as the oil heats up,

one can use the following values of §2A2 and obtain values of 2 and Al
corresponding to them.

Ve;giﬁnéA L
Parameters
1 2
A 1 p)
Ay 1 1,49
a 0.25 0,5
A 2,65 1,38

It follows from this table that if one chooses Eé = 1, then, as the

oil is heated up, the dynamic intensification factor increases by a factor
of 2.65 (version 1) and, if, for example, a, = 2, then the load factor
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changes to a much lesser degree with changes in temperature (version 2).
Obviously, the second version is more favorable from the point of view
of minimizing deflection. However, this & will not give the minimum un-

balance force stresses in the shaft (see Figs. 10 and 11 at @ > 612).

In fact, from the point of view of obtaining minimum values of R and o,
one should stop at 3@ < 1.

We have previously considered a case in which the critical speed is
in the operating range. When, by proper selection of the mount compli-
ance it is possible to shift the critical speed beyond operating range,
so that Woin 7 miz (see Figs. 10 and 11), & should be smaller than 1 from

the following considerations. As was pointed out above, the unbalance
force of the engine is frequently a source of undesirable vibrations of
the structural elements of the aircraft. In order to reduce this force,
it is advantageous to use @ less than unity. 1Indeed, turning to the
graphs of Fig. 10 it is easy to see that over wide range of frequencies
(at @ > 612) the unbalance force at a = 0.1-0.3 is approximately 2.5-3

times smaller than at @ = 1. Thus, selecting a value of a ranging from
0.1 to 0.3, instead of @ = 1, one can appreciably reduce the aircraft
vibrations.

_ In this case above we have given approximate values of a. Note that
a can be selected more rigorously when one knows the vibrational charac-
teristics of the aircraft in which the engine or turbine is to be
installed.

In choosing & < 1, one must keep in mind that this will increase the
deflection, the unbalance force, and the stresses at the critical rpm when
W is near unity (see Figs. 8, 10 and 11); however, in one case the critical
rpm is below the lowest operating rpm. When the shaft speed increases
and passes rapidly through the critical one (@ # const) the deflection,
the unbalance force and stresses in the shaft will be appreciably smaller
than those obtained by us in considering steady—-state operating condi-
tions (@ = comst), [4]. For this reason, as well as due to the short
time of passage through the critical speed, the slight increase in deflec-
tion, stresses, and unbalance force above those obtained at @ = 1 will
not harm the unit.

In order to illustrate the above, we now present a numerical example.

Example
1. Estimate the reliability, under vibrational conditions, of a

gas turbine engine, the design of which is shown in Fig. 1, and which is
described by the following data:

m=30.6 kg, I;=24.5 cm, Iy =9 cm, D =5.5 cm,
d=25cm, E=2-105N-106/m2; J=43 cm%
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W =15.7cm3, 7;=57.1.10~9m/n; 3,=1.83.10~9 m/n,

The operating rpm range is w_, = 1250 sec_l and w = 2500 sec—i, and
min max

the eccentricity e = 0.001 cm.

2. Select the parameters of a hydraulic mount which would provide
for safe and reliable operation of this system.

The compliance of the shaft on perfectly rigid supports is, from
Eq. (7)

&=95-10-% m/n;
The critical speed on perfectly rigid supports is, from Eq. (9)
©, =1852 sec~l,
We shall assume that in our case the rotor is mounted on rolling-contact

bearings; then at w = wi, the dynamic intensification factor with the

engine operating at the critical speed lies between 30 and 100 [6].
Then from Eqs. (23), (31), (52), (54) and (57) we find that

A*=03-1.0 mm. (60)

Cooa {1 =)Mo
_iﬂ(-—z)—i—-— — 4340 — 14450 N;
A+t

elh;_ ., 6,2
¢g=———— =181 - 603 N-10%/m*“.
¥ W
The results show that the deflections of the shaft, the load on the
bearing, the unbalance force and the stresses in the shaft at a critical
speed lying in the operating range will be high. Operation of the engine
under these conditions can produce dangerous vibrations in the turbine
and in the aircraft, or bumping of the rotor against the housing, with
subsequent failure of the power plant.

To reduce deflection, unbalance force and stress and to provide for
safe and smooth power plant operation, it is necessary to provide the
engine with a hydraulic damping mount.

We select the mount compliance at point 2
802=17-10-® m/n.
According to Eq. (7), this value corresponds to
6=41.33- 10~°m/n; 6=0.23 and ©; =889 sec~1.

The optimum a.

1 = 3 [Eq. (36)] and damping resistance factor [Eq. (38)]
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are
ay=1.63 and Eo=1079 N/cm'1 sec. 47

Figures 8 and 9 show values of A% and A§ as functions of the relative

angular velocity w. Multiplying the ordinates of these curves by the
eccentricity e = 0.001 mm, we determine the deflection of the shaft at
points 2 and 3 (see Fig. 1).

Figures 10 and 11 show graphs of R and o as functions of w. The
values of R and o are then determined from

_eCp (1—BR — (61)
R=—"2 =3 N,
_ BT e 10672
c_bW =1.385¢ N-10%/m=*,
The operating range of angular velocities lies between /48
ﬁ-)-mln=|.4 and ;:)max=2‘8. (62)

It can be noted from Figs. 8, 10 and 11 that employment of hydraulic
damping mount shifts the critical speed beyond the operating range.
Passing the critical speed at w close to unity is accompanied by increas-
ing A*, R and o. Selecting @ = 0.5 from Figs. 8, 10 and 11, and using
Egs. (6l) we find, at W = 1.2

A*=0,0187 mm; R =830 Njo=3 N-106/m2. (63)

These quantities are many times smaller than those given by Eq. (60) for
a system without hydraulic damping.

If we assume that the viscosity drop accompanying the temperature
rise produces a fivefold reduction in the damping resistance factor, then
(at @ = 0.1), the magnitudes of A*, R and o for w = 1 will be

A*=0,0795mm,R=2680 Nand 6=11.1 N-10 6/m2 (64)

These quantities are somewhat higher than those obtained from Eq. (63),
but still appreciably lower than those given by Eq. (60). Here it should
be remembered that in a system lacking a damper, the deflection, the un-
balance force and the stress, may become quite high [Egq. (60)] in the op-

erating rpm range on extended operation with relative angular speed mi =

2.08, while the values of A*, R and ¢ at w = 1 will actually be appreci-
ably lower than those calculated from Eq. (64) as a result of rapid pass-
age through the critical rpm when picking up speed. It is not difficult
to notice that, upon selecting an @ = 1 it would have been possible to
reduce to an even greater extent the level of A*, R and ¢ when passing
through the critical speed. However, this is not necessary.
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In addition, in examining the operation of the damping mount in the
range of operating rpm [Eq. (62)], it is not difficult to notice (see
Figs. 8, 10 and 11) that the values of A*, R and ¢ in this region at a

< 1 are appreciably lower than at a = 1. For example, if @ = 2.08, then
for

A*=0.013 mm, R=460 N ando=1.8 N-105/m?2,

a=0.1,

a=1.0, A*=0.0165 mm, R =1530N anda=>5.1 N-10%/m2,

As these numbers show, the levels of A*, R and 0 at 2 = 0.1 and at 2 = 1
are not too high compared with the values given by Eq. (60), and that
the operation of the engine at these values of deflection, unbalance
force and stress is safe. But in considering separately the effect of
the unbalance force and remembering that it frequently causes dangerous
vibrations, consideration-should be given to a possible reduction in 3
in order to reduce the vibration of the structural elements and to im-—
prove the vibrational damping of the engine. For example, if g = 0.1,
the umbalance force (and consequently also the vibration of the struc-
tural elements) will be approximately three times smaller than for @ = 1
(by a factor of 3.3 when & = 2.08) over much of the operating range.

The study presented above and the cited example show that safe and
reliable power plant operation can be achieved by using a hydraulic damp-
ing mount. This can be achieved by shifting the critical speeds beyond
operating range, as well as by reducing the deflection, unbalance force
and stresses in the shaft to safe levels when the critical speeds lie in

the range of operating rpm.
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DYNAMIC COMPLIANCES IN A SYSTEM WITH FRICTION

Engineer V. M. Balepin

Dynamic stiffness (or compliance) methods are extensively used in /50
the study of vibrations, as well as in practical calculatioms.

Recently, extensive work was done on the effect of various types of
friction on vibration. In this connection we would like to discuss the
problem of the dynamic compliance of a system in which friction accom-
panies the flexural vibrations. F. M. Dimentberg [1, 2] has discussed a
similar problem in its application to catenary systems.

The problem is formulated as follows. Determine the dynamic com-
pliance of a system with two degrees of freedom undergoing flexural vibra-
tions, assuming presence of internal friction forces. We shall consider
a nonrotating beam (Fig. 1) of constant cross section with a moment of
inertia J. The beam is hinged at the ends and carries two weights with
masses my and m,.

First we make some simplifying assumptions:

1. The internal friction forces are assumed applied over the design
cross sections (at points of action of the masses).

2. There is no friction in the supporting hinges.

3. The moments due to rotation of the weights are small and may be

neglected.
4., The frictional forces induced in the beam by these moments are

also neglected.
5. The mass of the beam is neglected.

A perturbing force P is applied over the design section 1; it is /51
defined as

- ; 4
P= Poe"”’zPoel(m+la) -y (l)
7 2
L, [3 LJ—.J .
where 20 is the real amplitude of the
m, m; ! force; e is the natural base of loga-
. S rithms; w = w + ia is the complex fre-
1%,15t quency; w is the natural frequency of
the beam; o is the damping factor.
Figure 1. Computational Sche- i=y—1.

matic of a Shaft with Two

Masses Acting between Supports. It is assumed that the internal

friction force is proportional to the
complex displacement [3]); i.e.,
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F o= —(CratatCott) Ve (2) 51

Here gnn is a force producing a unit displacement at point of application
n; zn is the complex displacement of section n; y is an internal friction

coefficient, which is assumed to be constant

v,= 'Ynyz

14+—1

4

The equations of masses my and m, will be
.. e . 3
y1= —3dmyy; — Bpmory — 8y (Cryyy 4 Croyy) i, — 3)
— 395 (Conth1 -+ Caoyp) ivy 1313 Pye’™t;
Y= — Byymyy; — BgaMyyy — By (Crayy - Croyy) vy —

— 335 (Cqrtry + Coayrg) £0, 48y P,

where Sn' is the displacement of the nth section produced by a unit force

applied in the jth section

In the first equation of system (3), the first two terms of the
right-hand side define displacements of section 1, produced by inertia

forces of masses m) and m,, while the two following terms are displace-

ments due to internal friction forces, and the last term defines the dis-
placement due to the perturbing force. Terms in the right-hand side of
the 2nd equation define the same quantities as in the lst, except that
these are applicable to section 2.

The stiffness factors are expressed in terms of action coefficients

b 3 b
Ch=_. —2 —; Cpy= - N Cy=Cyy=— 2 (4) /52

» 22 Y . 2 .
811820 < ]9 311820 — B

It should be noted that:

1) taking into account the moment due to rotation of the masses
will add two more equations to the system of equations (3). These equa-
tions would define the angles of rotation of the design sections. 1In
addition, terms which take into account the displacements produced by
these moments and by friction forces due to these moments would also be
added.

2) inclusion of one external resistance force in the system would
result in adding one term to Egs. (3);

3) the method about to be presented makes it possible to set up
equations for displacements [motion] of a system with any number of
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degrees of freedom, as well as any perturbations and frictional forces.

Since we are comsidering induced vibrations of the shaft, it is
sufficient to discuss only the particular solutions of inhomogeneous
equations (3)

ni=ye" Y= yme'™. (5)

Substituting corresponding values of displacements and their deriv-
atives into Egs. (3) and transforming, we get

(311-’711}:’2"l —i8,,C10,— ialzcm'vz) Yo+ (om0 —
~— 18};C 130, — i815C 00p) Yoo = — 8,1Pg;

(8gymy0? — 8y, Cyyvi — 18,,C105) Y10+ (8ppmye? —1— ‘

o o o
— 185, C 190, = i855C9)05) Yo = 351P0.

] (6)

The expressions for dynamic compliances will be
- P Dy ()
F24 ::—————-; == —,
UWpep R PyD

where

D= (311”1162 —1—i3;,Cyyv, — i312C217)1) ('322”12—‘;2 -1 (@)
— 15 C g0y — L893Co0g) — (321"11_‘”2 ~— i65,Cyyv; ~— i'622021'02) X
X (Bygmy0? — i8;,C 190, — i84,C30y);
D= (312”12:’2 —i8,Cp0; — i812C2202) By —
— (g 02 — 1 — i85,C 150 — iB5oCa03) By (9)

Dy =8y - iCpy0y (Byyd1p — ByyBp9). (10)

We now separate the real from the imaginary parts in expressions (7).

Thus we substitute into determinants (8), (9) and (10) the expression
$=w+ia.

Without presenting the derivation, we write the final result

Z11=M+iN; 221=M1+iN1; an
1211|=VM2+N2‘; Iézzl-_—VM?-*'N?; (12)
M=AC+BK' M, = AIC+BIKW_
C2+ K2’ ! C2+K2 '
_BC— 4K N.— BiC—AK
C2+ K2’ VU ocrgke

50



where /53

A=m}(0?—a?) (8,815 — 81,859) -+ Byy;
B = (39315 — 3185 (2amye — v,C5);
C =mymy (02— 02) (3,895 — Byyd;5) — (81375 — Byymy) (02— @) —
— 4y my028,,80907 4 20100 (01811899 -+ 1,01589,841)
+ 20,00 (5091815809 - 11105581,895) — 'vfcmcu'dmﬁn -
— V3Cy1Candag T (205177100 — D361,y — VylyBag) X
X (2315my00 — V101531 — VyCagdin)+ 15
K = (0 —a?) [8y7, (01615811 + VyCp0812 — 209y m1000) —
— 319y (2851772100 — V161,851 — VgCy180p) - 48,89y Mg —
— 31189 (Va1 €09+ T17719011) — €21819 (V173 81; - VotyB00)] —

— 200 (87 F Bgg1y) - €5,815 (V1 +Tg) + 01011815 F VoC0800-

Formulas (11) were used for calculating the dynamic compliances of a

beam with the following parameters: total length I = 60 cm, ll = l2 = l3=
= 20 cm are the lengths of the individual sections; J = 0.97 cm’ is the3
moment of inertia of the beam cross section; m; = m, = 3.5 kg (3.57.10~

kg-cm_l—secz) are the masses of the weights placed on the beam; vy =

0.0319, Yy = 0.041 and a = 0.905.
_ Figures 2 and 3 depict the variation in complex dynamic compliances
e and e,y a8 a function of the frequency. The real component is plotted

on the vertical axis, with the imaginary component on the abscissa. The
frequency axis is drawn perpendicular to the real and imaginary axes.

The vector of the complex dynamic compliance is drawn for each design fre-
quency and a line (hodograph) is drawn through the ends of the vectors;

it shows the manner in which the compliance varies in a system with two
degrees of freedom and with friction. In view of the fact that friction
was assumed to be proportional to the complex displacement, the dynamic

compliances 21 and &5 will not be equal to the static compliance when
f > 0.

Note the most characteristic points on the graphs. The point of in-
tersection of the complex dynamic compliance curve with the horizontal
plane corresponds, in an ideal elastic system, to the resonance frequency.

The real component is M = 0 and the imaginary component is N = max,
which proves the absence of displacement in the direction of the perturb-
ing force. The phase angle is n/2. After this point the curve passes
into the 2nd quadrant (it is shown in the figures by a dashed line). The
curve goes from the 2nd back into the lst quadrant in Fig. 2 when the lst
shape of the elastic curve of the beam changes to the 2nd. Also in the
region of the 2nd resonance (the expression "resonance' is used
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Figure 2. Graph of the Figure 3. Graph of Auxil-
Principal Complex Dy- iary Complex Dynamic
namic Compliance. Compliance.

arbitrarily), this behavior of the curve is repeated. On further in-
crease in the frequency, the complex dynamic compliance decreasesg all the
time and the curve approaches the frequency axis.

The difference between curve Eél = 521(2) and that described above

starts in the region of the 2nd resonance, when it passes to the 3rd and
4th quadrants. This passage is also related to changes in the shape of
the elastic curve of the beam.

The above equations obtained (restricted by the above described con-
siderations) make it possible to determine the dynamic compliance in
systems with several degrees of freedom at different types of friction.
By its form the solution of these problems differs little from that for
ordinary problems, except that the dynamic compliance turns out to be a
complex quantity.
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FORCED VIBRATIONS OF A FREE SHAFT WITH FRICTION
Engineer Ye.A. Artemov

The term free shaft is used here to denote a rotating beam in which /56
the effect of the support on the manner in which the shaft vibrates is —
neglected. It is assumed that the beam is coupled to its supports only by
means of vibration dampers (Fig. 1). An example of such a free shaft is
a rotor with sliding-contact bearings mounted at points of oscillation.

Such a shaft exhibits a varying degree of necessary external concentrated
damping, which depends on the kind of fluid used, as well as the dimen-
sions of the working surfaces of the shaft and of the bearings.

Yy
m, ‘[d1.

!

£— - ———

%a’
d 2

1=24552,

[ ¥

*

Figure 1. Schematic of a Shaft with Three Disks
Coupled to Supports by Means of Vibration Dampers.

The forced vibrations of a free shaft must be calculated in determin-
ing the resonance conditions in engines with dampers using the dynamic
compliance method. This paper presents an attempt to calculate the ampli-
tudes of forced flexural vibrations of a free, rotating shaft of any shape,
subjected to an arbitrary load, and eguipped with n damping mounts. It is
assumed that the shaft deforms linearly and that the damping mounts are
hydraulic (in such mounts the friction force is assumed proportional to the
frequency of vibrations). The distributed bending moments due to inertia
forces in the shaft are so small that they may be neglected.

We shall solve this problem by using integral equations of forced
flexural vibrations, which take into account viscous friction and are pre-
sented in [L4]:

1 1

1 ’ Y
(E.Ix")"_(u'-’{ngx—}—[z m,x,sm,] —-[2 J:i,-x;sj,J }——

i i
- Z alyzeui=2 q;
1 1
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i i " { o
I\ - ’ []
(EJY") —o? {QmFy + [Z fﬂzy:emz] —[Z szyﬁn} ’—l—
1 1 (l)
]
+o Zqixisa'1=0,

o

where EJ is the rigidity of the shaft cross section (in N-m?), x and y are
the shaft deflections in an arbitrary cross section along these axes (in m);
w is the angular frequency of vibrations (in sec~l); pmg is the rotating

per unit length (in kg/m); m are the masses of the disks at individual
i

sections (in kg)s J‘gi are the reduced diameter moments of inertia of the

disks {in kg—mg); g is the external distributed load per unit length (in

N/u); €t is a unit function

. _{0; z < zy;
kI~
1y 2>z

here subscript k of € takes on values m, p, J and o for terms with mass
m, force P, moment of inertia J and friction coefficient a respectively;
®j is the viscous friction coefficient in section z ,, and z is an inde-
péndent variable of integration. o=

For a free shaft, the system of equations (1) should satisfy the fol-
lowing boundary conditions:

EJx'=0; (EJX") =0;

0
EJy"'=0; (EJy"y =0;

fl

z

ijll:_.o; (ijll)/zo; (2)
EJyf'=0; (EJy'Y =0.

Integrating Egs. (1) along the shaft and substituting into them con-
ditions (2), we get

z i - .
(EJX) =2 U Q Fxdz L\ mx;p — l}: J3 ,-x;sj,] }—}-

1 1

i i
=4 E QY i + 2 Plepl TC,=0;
1

1

T
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/28

z i i '
(Ejyr):_—__u,'-’ {j‘ QmFde —l- 2 mMiliSemi — [2 ‘[:1 ,-y,-s,-;‘ }_..
0 1 1 (3)

!
— o Y ax;e -+ Cry=0.
1

The above system of equations describes by means of unit function Ek' the
i

analytic expression for the shearing force in any section of the shaft.
When z = 0, constants ‘Q‘lx and ng are also zero.

Integrating Eqs. (3) once more, we get
z z i i . )
EJx'=u? “ dz [S onFxdz+ Y, mx, emz] —¥ ix:Ej.-} +
0 0

1 1
z
tof
0
2

z i i
EJY =u? {S dz [S e.Fydz+ 2 mty emt] - 2 15 iyzsiz}—
%

0 1 1

- g~

z 1
a,yisu,-dz-i—j' E P,sp,dz +-Cor;
0 1 (ll-)

z i

— S 2 a;x2idz4Cyyp.

o 1 7

Substituting the conditicns of the unit function for z = O into Egs. (L),

we find that 922(_ = Q_2X = 0.

! - . . .
For convenience in subsequent manipulations, we represent Egs. (L) as

X' =M+ oMy, + Mpy; } (5)
Y =My — oM,

where M; and M" are the expressions in the figured braces of the first and

X L
seccnd equaticns of system (4), divided by EJ, i.e.,
Y /59,

ax—'Ej—j.Zazxisaldz-

b1

) z 1
M,y——EJ—EZaIy,sudz.
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z 1
1
Mp= E]‘bs‘; P,sp, dz.

Integrating Egs. (5) twice more, we obtain the starting integral equa-
tions for forced vibrations of a free shaft with viscous friction, subjected
to external periodic forces P :

1
X' = @Myt oMy+ Mp+x' (0); } (6)
y =M, — oMo+ y' (0)
and x:(D?Mx—{—(!)May—[_Mp+x,(0)z+x(o); (7)
y:szy—(DMux+y’ (O)z+y(o)’ )

The unknown constants of integration x'(0), x(0), y'(0) and y(0) will be
found from the equations of reciprccity of work, whicl: will be derived
for cur problem.

We shall set up the reciprocity equation for loads arising on free
vibrations and for external loads, assuming that the viscous friction force
accompanying the rotation of the system is an external force from the point
of view of the dynamic equilibrium. It is obvious that in & problem in-
corporating friction, the equation of reciprocity of work will reduce to two
equations of work in the x and y planes [1, k4].

The loads in free vibration are:

Force Loads [Fcrces]

4 i
P cxzwgk (§ QmF Xepdz + 2 mlxckl) H

1

1 1
Pcll+w3k (§ enfYycrdz + 2 'ni.‘/m)

1

Moment Loads [Moments]

] ]
* ’ * 1
M, =u? Z JqiXeri s M y=u? 2 Jd 1Ychie
1 1
Loads in forced vibrations are: /60

Force Loads

{ ! : J
P ,=u? (ijF«‘:dZ“l‘Z "llxz)-l"“’ Ealyi+ 2 Py
b 1 ! !
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! i t
P, =uw? (5‘ 0. Fydz+Y, m,-y,.) —o Yax;
4 1 1

Moments Loads

i i
M= Y Jjixi; My=a ¥ Jiwi-
1 1

The equations of reciprocity of work for intrinsic loads Bc and M and
c

for their corresponding intrinsic deflecticns Eck and y = and angles of
CX ck

rotation x' K and y' k> 8 well as for external loads Bj;nd M znd their
- Lc___ =

corresponding deflections x and y and angles of rotation x' and y' in
forced vibrations with friction will be, on the basis of the theorem of
reciprocity of work (the derivation of equations for systems without fric-
tion is considered in detail in [2]):

1 1

1 i i h
(ta ) [ §onPrasdet Smisorn + 34 xx] -
0

i i
=E Pixop+o 2 QY1 X cpis
1 1 (8)

1 1 !
(‘”zk - “’2) {S Cnf vy dz+ 2 MyYeni Yi+ 2 "d lyckiyl]=
9 1 1

i
=—0 2 QX Ycris

[l 1

where k = 0, 1, 2, ... is the ordinal number of the mode and frequency of
natural vibrations.

It is characteristic of a free system that it is impossible to obtain
a converging process on simple iteration even in the case of w < wcl'

This is due to the fact that the first elastic mode of the system is pre-
ceded by zero modes, which first must be removed, i.e., it is necessary
to find those orthogonality conditions which would eliminate the effect of
the zero-mode components.

A free shaft has four zero modes of vibration, corresponding to its
four degrees of freedom as a rigid, inelastic body, namely: displacement

in space relative to itself in the x and y directions and rotation in space

about the center of the mass about directions parallel to these axes.

/61

Analytically, the zero modes of vibrations of a free shaft can be written as
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Xoo1= — X5 x:»o] =O; } (9)
Yeor="—"Ye; Yeor=0.

Xege=—(2, —2)X;; X=X }
(10)

Yer=—(2:—2)y; Y.e=Y.,

where x , ¥y and Ec are the coordinates of the shaft's center of mass.
c

Substituting Egs. (9) and (10) into Eq. (8) and making use of the

fact that w and w are equal to zero, we obtain conditions analogous

c01 <02

to the orthogonality condition

{ ! \ i 1
w? (j. Qman'z"l‘E mixi)_l_w ZalymLE P,;=0;
1 1 1

N

0
1 i i
®? (S QmFydz—-}-Zmlyl)—u) Za,xi=0;
& 1
l
|

1

i i i .
(1)2( Qmszdz—}—Zm,-xiz,—i,—EJ; gx})—l—w Yayz+ (11)
1 1

1

1
+ X Pz, =0;
1

1 i i 1
w? (f enFyzde+ X iyz; + 3 1:1 i.l/;) — o Yaxz=0.
0 1

1 1

We now substitute Egs. (6) and (7) (one after another) into the
above expressions. Now, if we disregard friction forces in these ex-
pressions (they are small compared to other quantities) then the design

equations will simplify.and reduce to

{
olg, J-ofa., -} 0,4 N P, Lo’ (0) -+ 02 (0) m=0; ]l

1

i 12
b+ 0oy + 0%, 3 P2yt o?x'(0) g+ 0?2 (0) n=0; ()
1
wlay —- 0%a., 4 0%y’ (0) n + o’y (O) m=0; } (13)
oAby — b, w2y’ (0) g 402y (0) n=0,

where
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3 [ 1 i
a,— § P Mydz 4+ Y m Mg ay=( uF M, dz =X mMy;
1 & 1
4 i { . .
b, = § 0. FMzdz+ Y mMyz,+ ¥ I3 iMe;
1 1
s i i o .
b,= S o, FMpzdz+ X mMyz+ X J3eMys;
0 1

1
1 1 1 !
aa:=j FMo dz+ Y mM:,,; a,y=SQmFM,ydz-]— 3 m My
0 1 0 1

by

|
°¢/|1~

1 !
Q,,,FMu,zdz—i—E myMay 2+ 2 JS iMaxsy
1 1

1 i i
buy-——SQmFMayZdZ—*—Z m,M,wZ, +2 Jd. lMﬂyi; =
0 1 1

1 i 1 (14)
ap=5 enFMydz+ Y nyM,; bp=‘S‘QmFMpzdz—{—
8 1 8
i ¢
+X myM 2+ XS iMps;
1 1
1 i i
q=ijFz2dz+2 mz? + 33
é 1 1
1 o
n=§g,,,fzdz+2 m,zy;
o 1
1 i
m:j 0. Fdz +Y m,.
é 1

From Egs. (12) we find

X' (0)= 20sm—azn) | @ (o™= 0eT) 4

n? + mgq n?—mgq
i i
zpm> ( zm)
by 1 m—\a,+ 2 n
+ P o2 P 2 _
n?—mq ’

59



_ o2(a,q — bxn)_ @ (aayq —bﬂlln)_
*(0)= nZz— mq + n2—mq o

{ i
> P >\Pizy
ap+ 2 —Ja— | S S

+ W w?

n2—mgq

while from Eqs. (13) we get

w2(bym — ayn) + w (a, n—b, m)
" (0) = I N 4 ‘___;
¥ (0) o —mg
w? —b w(b, n—
y(O) =Gt T 0o =0 )
n2—mgq

/€3

Substituting values of x'(0), x(0), y'(0), y(0) thus obtained into

Eqs. (6) and (7), we find

' b.m—a.n ] bum-——a n )}
x':.:u)2 M —x X (0] M Sy .
[ =+ n?—mgq ]+ [ wt n2—mgq +
i i
D Piz > P
bp+ L m—\a,+ 2 n
Iy P TR - \? e/
’ n2—mq
' — , b, m—a, n
y'=w2 [My~ by’;l ayn ]—Q[M“— ay ar ];
n2—mgq n2-—mq J
x=uw?[M, L bym —a.n zL a,q—ben '|+ ]
* n2—mgq n2—mq
) b m—a,n a,q—b, n
® Mu ay ay zL gy ay
ol Mt o T
i 1
Qi Piz; P
bpt+ L - m—\ ap+ 1 n
M s s z
+| M+ G +
! i
2P 2Pz
ap+ 102 g—\ bp+ 1m2 n
LR
bym — ayn ayq — byn
—w2|M 14 14 2z {4 ¥ —
Y [ vt n?—mq + n2—mgq
b, m—a, n a, g—b . n
——w[M,y— s ]
—mq ns—mgq
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These are precisely the design integral equations of forced flexurali /64
vibrations of a free rotating shaft of arbitrary profile subjected to
i
forces IP , taking into account viscous friction and with zero modes
1 i

eliminated.

In the case when the perturbing force is P = 1 N, Egs. (16) become
the equations of dynamic compliance.

In abbreviated form, Egs. (15) and (16) can be represented as

x' =K ;oK oy Kp; } (17)
y’__-—. G)zK;,'—mKd..t;

x=m2Kx.+(DK¢y+Kp;

y=(!)2Ky—mK¢x’ } (18)

where X , K' and K are the integral operators which are defined by terms
X X ax

in brackets in Egs. (15) and (16), respectively.
Let us now analyze each of the terms in Egs. (18):
l. When P = 0 and o = 0, we have free vibrations. Then x = y =

= W Kx = 0K (if the shaft stiffness is isotropic) represent the amplitudes
= NA
of free vibrations.

2. When w = wc and a # O, X and y are the vibrational amplitudes at
resonance 1in the presence of friction.

3. When w = 0, x = Kp; its physical meaning is the "static" deflection
of the system when acted upon by the maximum external force, the magnitude
of which does not depend on the elastic curve of the free vibrations.

Terms wK and wK give the amplitudes of vibrations due to viscous

ax d.x

friction.
SOLUTION OF EQUATIONS OF VIBRATION WITH FRICTION

We shall solve this problem by direct integration of the equations of
forced vibrations, using the method of successive approximations.

Equations (18) are a system of two parametric, inhomogeneous, integral
equations. It should be remembered that the following are assumed as known
when solving these equations: natural frequency of the system wc, imbalance

A (perturbing force P = Awg/g) and viscous friction coefficient a.
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The formulas for vibration of a free shaft which are thus obtained
can be used to construct a converging process for successive approxima-

tion for w < wcl' If one uses conformal iteration, then these formulas

will yield a convergilng process for w < Woqe When w > w 1 use can be
c

made of the iteration method suggested in [2] for the problem without

friction.
We now consider the methods for solving the equations.

Simple iteration. We construct the ordinary process of successive /65
approximations from the formula

X141 =K Koy + K3 } (19)
) 9

y1+1:wQKI/1_u\K‘1xl (i=0, ly 29 oo

It may be assumed for selecting the starting function that

x=xp; y=0
or
x=y=x0,

where %, is the static deflection due to the external force, i.e., _K_E

Conformal iteration. The process of successive approximations in
this case is constructed according to the formula

x1=cl—1“)2K.r‘,_1 +Dl—lmKﬂyi_l_+ KP; (20)
Y =Di—lm2Ky‘,_1 - Ci—-lmK“xl_lv

where ‘C__L and D are some coefficients which improve the convergence

- -
of the ith approximation, and which are determined from the assumption that
the next approximation

xi+l=Clm2Kxi+DlmK“yi+Kp; ] (21)
Yir1=D09?Ky; — CroKoyy
coincides with the preceding, i.e.,
Xpp1=CiXy; } (22)
Yis1=Dyy;
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or

C1x;=C0?K 4 + D;0Koy; + Ky
Dy, =D,;0*K y; — Cr0Koy,.

Whence
C,— Kplyi = Kur) ,
! (x; — 02K ;) (¥ — ©?Ky;) +“)2Kax1K¢y[ ’
— KpoK (23)
DI — PP Naxy

(x; — 02K zy) (yi — w?Ky;) + “’2Kuleay1 ’

Coefficients gi and Qi are assumed to be constant over the entire
range of integration and, consequently, Egs. (23) hold for the shaft sec-—
tion z = Zp,x » Where the deflection functions are at maximum. Usually this
is the same section over which the functions are normed, so that the values
of C5 and_Di_are determined from Egs. (23) for z = zZmax . After this,
successive approximations can be obtained from Egs. (20) without difficulties.

It is clear from Eqs. (22) that the quality of the approximation can

be estimated from coefficients C4 and Dj. The faster they approach unity,
the better the convergence of process.

In this case conformal iteration can be used.
In resonance, w = wc, but

x

o, = —

[ Kx

Y

Zmax Ky

Zmax

Substituting this expression into Eq. (23), we get

C,=0
. (24)
©Koyi Zmax
Accordingly, Egs. (20) will take on the form
Xpp=— 0K oy + K3
mKﬂ_ﬂI Zmax (25)
_.._Kp
Yira= oK oKy
oyl Fmax
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We shall use the method suggested by A.F..Gurov [2] for the problem
not involving friction. The essence of this method is the fact that the
fast-increasing components due to inertia forces, which appear due to the
inexactitude and approximate nature of the calculations,are eliminated by
using the condition of reciprocity of works; to use this condition, it is
necessary to first determine several free modes and frequencies of

vibrations.
Thus, in the case being considered the perturbation frequency w lies

between two natural frequencies, i.e.,
gy < @ < oy

We use iteration in the form

xl+l =w2K;i—i “’K:yi +Kp;} (26)

Yis1 =Ky — oK,
where K¥ , K¥_, K* and K¥ are integral operators of the starting
X y X o

"oorrected" functions of deflections at forced vibrations. This function
will be determined from

xi=x;+ CotXers } (27)
y;=y,+ Cot¥ars

where §i, Xi are the starting functions;

are functions of modes . of natural vibratio i func-
3{_21, ’Z_c_l natur i ns or eigenfunc- /67
; he shaft rigidity is i . -
tions (when the shaft rigidity is isotropic, X_l X_c_l)’ and

C .., C _. are the coefficients of the condition of reciprocity of
i1’ Tyli

work in planes x and y, respectively.

The operation which is defined by Egs. (26) frees the desired vibra-
tion mode of errors and of terms which appear due to inexactitude of the
calculations done in the process of successive approximations.

The unknown _C_x and C will be found from conditions of reciprocity

= X.l
of work, expressed by Egs. (8) in the form
! d d ® ’ 1
(9% —o?) [_S OnFXaxdz4 Y muxx -+ X Jg ixclixl]= l
1 .
|
L

0 1

t i
v,
=Y Pixoy-=o Y 4 uXeas
1 i
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1 1 1
. 28
(e31—2?) I:_S‘ Qmch;dz-i‘ 2 myeuyi+ X Jq chliyi] = (28)
0 1 1

]
‘ =—o0 2 QX Yeui-
1

We multiply Egs. (27) by x or y and integrate the result thus
1 c1
obtained over the enitre shaft; then adding similar terms, we get

1 i i . 4 ]
SQmFx;xcldz_l_ Y mxix+ X -’:1 ixi-xcl'—:_s‘ OnF XX 1d2+
0 1 1 0
i SR A
+ X mpxa, 4+ X Jqixxen +
1 i
1 d LA '
+ Cxll (S QmFxf‘]dz—'l_ 2 mixgli + E Jd Ix"l) » (29 )
$ 1 1 :

I 1 i : 1
{enFyiyadz+ X myiyen+ X Jq19iga =bf enF Y1y eidz +
0 1 1

! i
F+ Y muyyeu+ X I3 iyen+
1 1

7 i i
'2
+Cuu (f@... Fyudz+ Y myya + XJ3 iyn) :
] 1 1
From this, using Eq. (28), and denoting for compactness

1 i i

» 2

JQmszldz +- X myeu+ NI ixa=My=IMTy=1,
1 1

we find

! ! «
a <l R
D Pixgy+w D) wyiXey
1 1

Cor=""(g—aym  ~
1 { !
‘gqmFxxﬂdz + 12 myx Xe+ g -’:1 XY (30)
- A nl ’
1
- wE A1 XYt
Cyu_—' :

(mgl —«.ﬂ) m,

1 { i
LI
iﬁ; emfyyadz+ ;‘, miyiyer -+ ; J(; t91Ycu

m

4
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but, as follows from [2] and [3], the numerators in the second terms of
Egs. (30) are orthogonality coefficients.
Then Egs. (30) take on the form

{ { \
D Pixeyt+o X tiyixy
C,= N RN 1 TS
* (mgl —mQ) ”l 171 ’
, (31)
wE“leycu
Com T Cwm
v (“’31 —(o?) I 7

From this we finally get equations for determining the unknown co-
efficients:

7 ! 3
D Pixcut o ) qyixg
Coi= : ; ’
* (oH—) T +1) 7y
. (32)
O’Zazxzym
C 1= !
v (0 —«?) T+ 1)
After determining x, , ., and y from Egs. (26) in the first /69
171 i =
approximation, the operation is repeated, i.e., we find x, s ¥ s
L +2 i40

. gn, Xn until two successive approximations will yield sufficiently

close results.
After determining x and y , the total amplitude of vibrations of the
e!

system is determined as the modulo of the complex number X + iy

u=)/ T, (33)

and the phase angle (angle between the line of action of the force and the
displacement of the system) will be

_—zarctani—:. (3)4)
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Example. Find the amplitudes of vibrations produced by a perturbing
force P = 1 at the second disk (i.e., the dynamic compliance) of a free
shaft shown in Pig. 1, if it is known that

[=0.4 m; Jo =86.10~8 m%;
dy=0.03 m; my = mgy =3 kg;
do= 0,04 m; m3="5.5 kg;
om =7.9-103 kg/m3; J41=0.0038 kg-m?;
E = 0,204-1012 N/m?; J12 = 0,00746 kg-m?;
o) = ap=30 N-sec/m; J 43 =0.00392 kg-m?;

J{=231.9-16—8 m%, wy = 3171 sec~1;

For the sake of brevity we shall confine one calculation to the
resonance conditions, i.e., to the case of w = 3171 sec~l. The calcu-
lations shall use Egs. (25). Their sequence, shown in the table, is
analogous to the usual integral methods for solving vibration problems
(see examples in [2] and [3]).

1. In lines 1-15 of the table are entered and calculated the geometric
and mass parameters of the shaft.

Multiplier I/20 of line 5, obtained from integration by the trapezoid
formula for a shaft broken up into ten equal segments, is entered in the
column "multiplier."

In order to calculate the values of m, n and g their components must
have identical multipliers. To achieve this, multipliers /20 and

0 lg(l/QO) are entered into the "multiplier" column of lines 6 and 16 and
m

accordingly the "function" of these lines is multiplied by their recipro-
cals, i.e., 20/l = 0.5 and 20/pml3 = 39.5

2. In lines 16-36 are determined values of KE and K' . Coefficient
w R
791 in line 28 is the reciprocal of pm(l/EO)el. Similarly in line 32

coefficient 0.392 is the gquantity (1/20)310’6/E, factored out from the
"multiplier" of line 31. The same operation was performed in line 35.
Lines 1-36 are constant for all the approximations.

3. In the first approximation yo was approximated by Epf and K

3

gi; and 21 were determined; the b2 thus obtained served as the basis for

the second approximation, etc. All the reiterated approximations start
with line 37. For compactness in calculations, we do not consider approxi-
mations 1 through 3 and consider in detail the fourth approximation
obtained on the basis of Y3 (and, accordingly, If3), which are given in

lines 83 and 84, which yields satisfactory results (Qh is close to unity).
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TABLE

) | o 1 ‘

Ordinal Function ! Multiplying factor Coz=D | 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0

mumber' o _7\ B o \ | '
1 } omf Cm \ 3,03 ‘ 472 ] 5.5 5.5 5,5 56 5.5 5.5 55 5.5
2 £l £ 3,19 5,45 Rfi o BB 8,8 8,6 86 LR X 8,6 8,6
3 " O W 710 ‘ 287
4 7, 1 i [ . 00746 | | 0,0302
5 () dz o ({]20) i 8,(5 1% ,87 29,87 40,87 51,87 62,87 73,87 84,87 25,87 106,87
N mes 0m (1/20) 11,5 3,65 13,5
7 =z om! 0 o472 v 1,88 2,2 2,75 3,3 3,85 4,4 4,95 5,5
8 ' [Ty dz Cm! {1/20) n o 0,472 2,04 4,8 8,64 13,6 19,64 26,79 35,04 4.4 51.84
0 : mz-0,5 . ond (1/20) ' a7 ] 213 13,5
10 2 on 0 0,01 0,04 . 0,00 0,16 0,25 0,76 0,49 0,64 0,81 1
n -1y Omi? 0 0,0472 0,92 0,495 0,88 1,375 1,98 2,69 3,52 4,45 5.5
12 LIy m2? omi? 15,6 2,56 87
13 (1) dz oml? (1J20) 0 0,0472 0,314 1,029 2,404 4,659 8,014 12,68 18,89 *96,86 36 81
14 )z oml? (1/20) 7,74 127,8 191;,5
15 Jyq:395 0mli? (1/20) 1,501 2,047 1,548
16 P P 1,0
1
7 Xp P 0 0 0 o 0 0 L9 1o 1,0 1,0 1,0
1

18 §(17) dz=Mp P {{{20) 0 0 0 0 0 0 0 2,0 4,0 6,0 8,0
19 (18)/(2) PIE (1j20) 0 0 0 . 0 . 0 0 0 0,2325 0,4651 0,6977 ! 0,9302
20 1(19) dz=K, (PIE)Y (120 0 0 0 0 0 0 0 0,2325 0,9301 2,003 3,721
21 [ (V) dz=Kp (P/E) (/2003 . 0 0 ¢ 0 0 0 0 0,2325 1,3951 4,4182 10,232
22, (1)-(2D o emPIE (200 0 0 0 0 0 0 0 1,2787 7,6731 24,3 56,276
23 1(22) dz omPIE (1]20)1 = PAg 0 [} 0 0 0 0 1 0 1,2787 10,231 42,204 192,78
24 (6)-21) PAg 0 0 1979,9
95 (7)-21) . el AJE ({f20) 0 0 0 , 0 ) 0 o 0 ©0,80513 ¢ 6,1384 21,8701 56,276
%6 ' [(25)dz Copad 0 0 o 0 o 0 0} 080513 ' 7,087 35,937 114,08
2T (9)21) - PAY ‘ 0 . ‘ 0 ' 1979,9
28 (4791 om (12002 1 , 30,088 . ‘ 59,009 31,007
9 @R)-2) PPy o 0 115,38

Commas represent decimal points.
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TABLE (cont.)

Ordinal Function Multiplying factor 2t} 0.1 0,2 0,3 0,4 0,5 0,6 i "7 o,R
mumber l .

30 K,',(O)-z (emfE) (1200 0 —116 —2,32 —3,48 —4,64 -5,8 ~6,96 —8,12 —9,28
31 AN+ B0 +Kp(0) =K, (om/E) (1202 2,46 1,3 0,14 —1,02 —218 —3,34 —4,5 —5,4275  —5,4249
32 K, (31)-03-92 P-10-5 0,96432 0,5006 ' 0,0549 —0,3008 —0,8546  —1,3003 —1,764 —2,1216  —2,1266
kx] Kp=(31){(32),..0,9 P10—6 (—2.1266)=4, —0,4535  —0,2306  —0,02562. 0,188 0,4019 0,6157 €,8295 1,0004 1,0

M (20K, O (@nl E) (1202 -0 ~0,5

35 (34)-06,196 P.10-5 ~0,11368 —0,11368

36 K,', = (35)/(32)em0,A A 0,05346 0,053468

37 aK p=yy ady —0,4535 !

B Zage=1I(3N) ad,

W eR) dz aA-1[20

83 " 1 141,08 174,54 79 13,85 —35,9 —~71,57 — 84,4 - 69,27 —20,84
Mo A 138 0,176

Fourth approximation
a7 uy,y Wl 181,04 0 0 0 0 0 0 0 20,847
181,14 151,19

as Sayy - Suyy wh 0 181,04 181,04 181,04 181,04 181,04 181,04 181,04 18], 04
30 {8z WAy (20} 0 362,08 724,10 1086,2 1448,3 1810,4 2172,5 2534,6 2806, 6
10 BN (@A) () 1} 66,32 4,204 126,3 168,4 210,51 252,61 294,72 336,81
4 () dz (@A) (20 0 66,32 216,24 427,34 722.04 1101 1564,1 21114 2742,9
2 f(1l) dz (B {207 0 6,32 340,48 : 993,66 2143,0 3966, 1 6681,2 10307 15161
Ph] (1)-¢42) (Aol E) (L2} 0 313,03 w221} 6465,1 117,87 21814 36472 56389 83386
44 {(43) dz adody 0 313,03 | 25482 | 99354 27187 60788 119174 212335 352410
45 (6)-(42) adod ST 2384076

45 43)-2 (adiomlE) (1/20)31 0 31,303 384,42 1639,5 4714,8 10807 21888 39682 66709
47 f(46) dz ady Ayl 0 31,303 447,03 2470,9 8825,2 24447 57237 118802 225193
48 (45)-2 ady Aol 11525 1412446

49 (28)-(41) a A 6517,8 92206

50 Koy (0)-2 (ha/EY (1/20) 0 —345,6  ~0891,2 —10337 13782 —~17228  —20674 ~24119  —2756b
51 42) + (50) + K(0) = K, (AyofE) (1[20) 9845,6  6466,3 3303,9 508,26 —1793,4  —3416,3  —4107,2  -3066,4  —-2558,4
52 (51)-0,0373-10-2=uK A 3,672 2,412 1,232 0,187 —0,669 —1,274 —1,566 —1.479 0,954
53 41) + % =/<;y (aALJE) (1200 —1505,96 —158,7
54 (53)-0,01865. 10~ =uK,, A —0,281 —0,0206
55 1)y omdy 711,49 588,02 378,35 76,208 97,5 —303,64  —464,27  —381,02 164,16
56 §(55) dz  amy (120) 0 1209,5 2265,9 2720,4 2599,2 2008 1150,1 304,81 —240,37
57 6)-1m [ om (/29) ROl 1 ' —29066

R T

—10,44 —11,6
—3,5018 1,092
—1,3962 0,4281
0,6565 -—0,2013
3,141
0,61564
—0,2895
24,62 84,84
15,18
0
151,19 151,19
3199,0 3501,4
371,97 407,13
3451,7 4230,8
21355 29038
117453 150709
553249 830411
518851
105708 159709
397610 663027
5618853
131184
—310i0 —34456
190,6 4428
0,0711 1,652
2508,0
0,468
135,45 466,61
—269,08 339,08
| ‘ 16416

'

No



PZ9

muwnber

58

59
60

61

62

63

64
65
66
&7
68
69
70
71
72
73
74
75
76
77
78
79
80
81

82
83
84

85
86
87

88
89
90
91

Oraj n-ql.

|
|

i

{5T)

(56) + (58)
[ (59 dz

0 (28)-1,
T (61)
(60) + (62)

(63)/12)
((ydz
{(65)dz
(1)-(66)
[(BTydz
(B)-(66)
67y 2
IOX L
(60 2
(2R)4(C5)

/(Ij 0) z

(65) - (T4) + K}y (0} =Ky
(75)-623,4+ 10—8 = Kol

(65) -+ K’

(0)/20 =K,

(77)-311,5‘10"5=K;w1

Dy (52)

(79) -+ (33) = x4
Dy (54)

(81) + (36) = x;
Dy (76) = ya
Dy(18)=y,
oe}? = 18012

T2 = (832

1851 + 187]

V&

(88) Ay = u

arc tan (84)/(80)
?

Fuleiply ing

omAy (1/20)

omAy (1720)
omdy (12032

omAy (J207

omddy ({12072

omdy (1/202

(oA /) (112072
(omA,/E) (1j200
Ado

omArAo
0y An (1/20)
emAyAg (/20
omA Aol

omdy Aol (120
omAy Al (1/20)
omAy Aol (1/20)
Ao

A Ay

Ay

(en M/ E) (120
Ay

Ay

A

Ay

A

A

A

10-6

arc tan

feator

0
¢
0
0
]

0

0

29603t
184,55

3,849
3,396

193,45

11,533

37423
37434,5

193,48
—4114,5

56,964
89°

TABLE {cont,)

IR E
] 0
15577
1299, 2205.,9
1299,5 4854,0
— 16604
T
V) 1t
--11739
]299_5 4/44
--1205
238,0 5h3,68
238,0 1041,7
238,0 1517,7
1123,4 i 87,4
1123,4 ‘ 504
293675
112,34 ‘ 1669,5
11234 1894,2
i 55735
TS
-93403,3 i ~186807
202866 ' 110742
126,47 60,037
l ~-45060
—14,223
2,528 1,291
2,288 1,265
~0,205
1,242
132,57 72,365
—14,01
5,235 1,6002
17575 5236.7
175802 5238,3
132,59 72,38
—2819,7  ~1539,2
57,941 57,205
89°01 80°

; —ling

1906

216,3
19%7.n
4546, 4
2500

' 43947

7501,5
1 11065

—280210
20367
12,7

0,196
0,384

13,312

0,1475
177,21
177,36

13,32
—283,26
34,666
sl

-
|

13311

15910
(941

— 16604

51810

60244
10322
16855
92703
161655

37081
55648

—373613

—60727
—-37,86

—0.701
—0,299

—39,695

—0,0894
~1576,7
—15757%
~—39,7
—844,26

132,75
89°34"

|

'

13311

15319
agedy

- 16601
/3070
655,6
26002
53179

202485
546843

146243
238972

—467017

—117807
—73,44

—1,335
—0,719

—76,98

—0,517
-5925,7
—5926,4
—76,99
+1637,3

107,061
89°28°

I
i
|
'

0,6
— 16655

131

— 15508
14461

1oy
A15,14

— 1180
~ 16001

113271
112819

13166
13118

4R775
127056
703758
1543086

RO7470
27254628
2RTRIGA
~560420
—136433
—P5,05
273
0,646
~1,641
0,812
~0,03103
—0,02243
—89,149
0,677
~0,6593
-—7947,5
~-3048,2
-—89,15
-—1895,9
09,78
89°29°

}

|
¢

0,

— 16655

—16350
azere

— 16180

81379

9462,6
71404
248135
1364743
3611587

955320
2185045

—£53823
— 109657
—68,36

—1,85
-~0,56

—171,655

—0,3025
—5134,4
-—5134,7
~7,65!
+-1523,7
130,28
89°33

—16655

—~16415
64803

—~16189

AR

5652,7
’6519
406058
2231319
7200649

1786655
4927020

—747226
—45137
28,138

—29,404

0
—869,0
—869,9
—20,5
-£627,35

co

90°

0,0 1,0
! —16555 ‘ Jiags
" _iess .3?5252
32002 —706,0
18828
—16189 _%??29 '
53l
wwr 0 _22LI6
94011 Q3/K5
SRC5RE 774484
3226234 4950560
12669202 ! 90155008
149862054

2903611 1256662
9617286 16780550
149862454

2911002

—B40630  _nagoaz
—41989 136482
26,177 85,083
47183 ‘

14,608

0,0745 1,742
0,731 1,001
2,491

0,2015

27,44 RY, 184
15,443
0,544 2,314 ;
752,95 7083,8
730,48 7066,1 i
27,45 89,19 l
—3,75 . —18%,7
37,6% 59,252 I
a5°28° i

59°1 l
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A

m=(5), - X (6) = R488
1

3
n=(8),_, - E (9) == 500
i

3 3
Al & "
q=(13),.,+ 1\,(14)-_\l (16) = 359,9

n? — mq=.—b5483

om(L\  7.9-10-6 (40\4
=MV = [ —) =62.10—12 Kg. m/N
4o (20) 2.04-106 (20 2 g m

1
ap = (23),01 + X (24) = 128781979 9=210268
1

1 1
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N

Modes of the Elastic Curves of a Shaft in Succes-
sive Approximations.

In lines 37 through 54 we determine the operators wE&X.and wK}az: /71

Constants ggx,

of the table.

Eaxf E}qx(o) and gax(o) are to the left of the columns
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Coefficients O.O3"(3~1O_2 and 0.01865'10'2 in lines 52 and 5L are

( o / E) expressions (I / 20)3 and (a/ E) (1 / 20)2, factored out from
the respective "multipliers"” of lines 51 and 53 and multiplied by w = 3171.

Since g'ax(o), the multiplier of which is (Olél20/E)(l/20)2, is added
to the multiplier (Oiél/g)(l/20)2 in line 41, it is multiplied by 1/20.

4. In lines 55-78 we determine, by analogy with the preceding,

ng
L
A = (pm/E)(l/20)3 factored out from the "multiplier" of line 75, and

and wg_zg'x. Coefficient 623.14.106 of line 76 is the expression

—-O
-6
multiplied by 3171l; coefficient 311.5°10 of line 78 is the expression

(pm/g)(l'/zo)3 from the "multiplier" of line 77 multiplied by u?.

as Q6 07 08 03 (0%

N/ e < R B A

Fig. 3. Deflections of a Rotating System.

The coefficient of conformal iteration D is determined from Bq. (24)
over the normed section of the shaft Z = 0.8.
5. In lines T79-8L4 we determine X, and 1), (as well as Ejh and th)

from Egs. (25). TFigure 2 shows the elastic curves of the shaft in the
successive approximations, where it can be seen that these curves are
practically identical in the third and fourth approximations.

6. In lines 85 through 91 we determine, from Egs. (33) and (3k4), the
total deflections of the shaft and the phase angles.

The deflections of a rotating system produced by pericdic force
P = 1 are shown graphically in Fig. 3.

Calculations for the preresonance and beyond-resonance conditions
are performed in approximately the same manner. In the first case they
are calculated using Egqs. (23) and in the second, using Egs. (27).

SUMMARY

An integral method was developed for calculating the vibrations of a
free shaft, taking into account wviscous friction.
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The formulas thus obtained can be used to calculate the amplitude-
frequency characteristic of a rotating shaft, taking into account the
distribution of masses and the effect of gyroscopic moments of the disks.
In the numerical example presented, the system has two damping devices,
but the method developed can also be used for a system with a large
number of damping devices.
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SELF-INDUCED VIBRATIONS OF AXTAIL-COMPRESSOR BLADES
Candidate of Technical Sciences I.M. Movshovich

Stages of modern axial compressors, which have a large capacity, /73
are subjected to high loads and operate over a wide range of reduced rpm__
pass, when operating under nondesign conditions, through a region where
the blade profiles are streamlined under large angles of attack. Under
these conditions self-induced (nstural) vibrations arise in some of the
stages. Experimental studies of natural vibrations performed when ad-
justing gas turbine engines have brought to light many features charac-
teristic of this phenomenon.

When natural vibrations ensue, one or several blades start to vibrate
first and then the vibrations extend to the entire blading stage. Steady-
state flexural natural vibrations then exist simultaneously in all the
blades of the stage. All the blades of the stage vibrate with the same
frequency but with different phases. Here one can observe an appreciable
scatter of vibration stresses in individual blades of a given blading
stage.

Different blading stages of the same design start to vibrate at dif-
ferent flow pressures at the compressor intake. This pressure is called
the initial pressure. The initial pressure inducing natural vibrations is
a particular property of the given blading set. The scatter in these
pressures may be as high as 200-300%. When the pressure is increased above
the initial, the amplitude of natural vibrations increases rapidly to dan-
gerous levels. Hence an engine certified for service should not have
natural vibrations in the operating rpm range.

THE AMPLITUDE-FREQUENCY EQUATION

Due to the unavoidable dimensional deviations inherent in any manu-
facturing process, the natural frequencies of torsiocnal vibrations of
blades have a scatter of as much as 5-10%; however, as was noted above,
in self-induced vibrations each blade does not vibrate with its own natural
frequency, but rather with a frequency common to the entire blading stage.
The appearance of this common frequency is due to interaction between the
vibrating blades, hence mathematical description of natural vibrations of
blades in a cascade requires consideration of a system with many degrees /1&
of freedom. In the general case this will be a system of nonlinear equa-
tions, containing as many independent variables and, consequently, as many
equations, as there are blades in the cascade. Solution of such a system
of equations, although not difficult in principle, requires extremely cum-
bersome calculations and can be obtained only on computers. The problem is
made more complicated by the fact that the aerodynamic and mechanical inter-
action of the blades vibrating in a cascade has not been sufficiently well
investigated. Hence, in order to construct its first approximation, it is
advantageous to consider the motion of each blade separately, by replacing
the effect of neighboring blades by an external periodic force, the fre-
quency of which is equal to the frequency of vibrations of the entire blad-
ing. In this manner the problem reduces to forced vibrations of a self-
excited system with one degree of freedom.
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We shall assume the simplest scheme of purely flexural vibrations and
we shall consider the vibrations of a profile which has the reduced mass
of the entire blade and the aerodynamic characteristics of its peripheral
cross section. We shall also make use of the "steady-state hypothesis"
for aerodynamic forces on the vibrating profile.
the equation of motion for the profile has the form

m%-}—xz-—]—Pﬁ —P,=F cos oy,

9d2z

where PIT =z
dt

P, =k MpS [Ca(i)—Cr (o))

F cos oyt

Under these conditions

(1)

is the mechanical damping force in the
material and in the blade root;

is the aerodynamic force;

is an external periodic force and

0i3

We introduce the notation:

(0]

* Wi

wl=—>; oeo=—2; T=ay;

m [2N]

0i

1 2 EQ'EEK_ . __J_ 24
Cr= kM?pS ( : )0, Ca=—t k M2S

wy )3
w

2 F=plg @=14pa; —2 C=p,
* k2

C
-—JK)AF4—.N is a force factor.

. , oC ., 1 (03
Cr()=Cprip)- (‘EE‘) Al Y (
0

( 3Cp \

ais )’

where a is the mismatch between the frequency of the external force and
is the reduced amplitude of the external

the natural frequency and A

0

force. Then we will get the following nonlinear differential equation

£+z=p[).oc051—az+69—222+g—'3 z'a—I-é]. (2)
1 1

An estimate of parameter W for an ordinary compressor stage yields /75
U = 0.05, which means that the problem can be solved as a quasilinear

problem.

Periodic solutions of this equation were first considered by
Van-der-Pol, after whom this equation has been named.
periodic solutions of the Van-der-Pol equation was presented by A.A.

They have determined the range of "capture"
of the natural freguency of the system by the frequency of the external
force and the range of combined vibrations, when the natural frequency of
the system and the frequency of the applied force exist side by side, and
they have mapped out the stability boundaries for both ranges. The

Andronov and A.A. Vitt [11].
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parameter which denotes transition from one range to another is the
limiting frequency mismatch E'lim' In the case of moderate frequency
mismatch, the frequency is "captured"; when the mismatch increases,
combined vibrations arise.

Case of Small Frequency Mismatch

We shall first consider steady-state vibrations with small fre-
quency mismatch and we shall, consequently, seek the periodic soluticns
of Eq. (2) with an external force period of 2m in the form

z=2z9+pz;+pize+ ...
When y = 0, we get the linear generating equation
Zo+20=0, (3)
the general solution of which has the form
20=M, sin v+ Ny cos . (&)
MO and EO will be found from the assumption that the second approxima-
tion
2=zp+p2z, (5)
is also periodiec. Substituting solution (5) into Eq. (2), and equating

the coefficients of terms incorporating pu to the first power, we will
get

. . . C .
z,-|—z1:)\ocosT—-azo—i—&‘j—zgzo-l-zo—}—-é:— 2. (6)

Substituting the above expression into Eq. (L), we get

Zta=—aNot Myt 2= M3+ - 22 MoNG+

4 ¢
3Gy a2a 3G g aM— Nl apn
+ ic MyN§+ e Mo]cos'c —l—[ aM,— N, 1 G, MoN, (1)
1 3 C 3 C .
_TE":_N{;_TE?_M?,NO—Te—?NS]smt—]—Flcos%+

-+ Fysin2t 4 Fycos 31+ F sin3v - Fy,
where Ei’ EQ, EB’ Eh and Es are polynomials in MO and EO’ which are /Zﬁ
time-independent. In order that 2z

the coefficients of cos:T and sinT must be zero:

obtained from Eqg. (7) be periodic,
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P(M,, No)-_—p,—aNo+Mo+—‘—:'— M3+l = MNo+ |
1

®
Q(M,, No)= -—aMo—N,,—T —MoNo—% 2 N3
G

We denote

M,=Asing; '
o ¥ } (9)
Ny=Acosy,

then A is the amplitude of vibrations from the first approximation and
¢ is the phase difference between the external force and the displace-
ment of the vibrating blade.

Then the solution of system (8) will have the form

k)o-—kA'*’[a?-{- (1 - ?’:—’ ]
A2 (10)

1=
tanq;-: —

1]
a

where k = -(g/gi + 393/21). The above solution is the amplitude-
frequency equation of induced vibrations in a self-excited system

The Lyapunov stability conditions for periodic solutions of
(2) yield the following inequalities [1]:

_ 9P 4 9Q
oMy | aNg <0 (11)
P 0Q |
2P, Q) ___| oMy oMo - 10
Mo N | pp 0 <0, (12)
0N, 9N,

which in terms of A and ¢ give, respectively,

RAZ>2 (13)

and

3
2 At kAt 41250, (14)
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The last two expressions yield conditions for the existence of stable /77
periodic solutions, i.e., conditions under which it is possible for a T
self-excited system to vibrate with the frequency of the external force
which "captures" the natural frequency of the system.
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Fig. 1. Amplitude-frequency Curves for Compressor
Blades.

Figure 1 depicts amplitude-frequency curves corresponding to periodic
solution (10). They also show the stability boundaries corresponding to
conditions (13) and (1k). It can be seen that for any magnitude of the
external force kAQQ it is possible to find a frequency mismatch such that /l§
Eq. (33) will be violated. This is precisely the limiting frequency mis-
match. When the frequency mismatch is higher than the limiting, combined
vibrations set in.
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Case of Large Frequency Mismatch

We write Eq. (1) in the form

Pzt et P o Yo F2 .
z+ = —]—“uzzz-}-’L ,z+”~ P=F—cost; (15)
the notation here is that previously used.

Following Stoker's presentation [3], we shall seek the solution
for combined vibrations in the form

z2=b;cos wt4= A cos (v —g); (16)

here ®

be is the amplitude of vibrations at the natural frequency,

measured in the new time scale.

Substituting Eq. (16) into Eq. (15) and equating the coefficients
of sin wr, cos wr, sin T and cos T in the right and left-hand sides of
of egquations, we will get, after simple transformations:

b2+ kA2
RiZ— kA2[a2 + (1 —%“’%ﬂ; (17)

kobi 28 A2=4; (18)

. 28,07 + A2
— 4

a

The only new notation here is
C
Bo— __(_E_ : _8u,2).
Conditions (17) and (19), together with Eq. (18), yield

3kA2 2] (20)

Bi=kA? [a2+(1 -2

and

1—= (21)
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Equations (20) and (21) are the amplitude-frequency equations of
combined vibrations written in terms of the amplitude of these vibra-
tions which have the frequency of the external force. Combined vibra-
tions must satisfy Eq. (18), for which reason it is also possible to /79
write similar equations for the amplitude of vibrations which have the
frequency of free vibrations.
Studies of stability of com-

. bined vibrations yield the stabil-
¢ \ ity condition
150
\ kA2<2, (22)
75— The amplitude-frequency curves
and phase shifts as a function of
00— \ frequency mismatch are shown in
\\ kat=2 Figs. 1 and 2, respectively. These
7! curves make it possible to explain
the scatter in vibration stresses
\\ and the phase shifts between vi-
50 B ‘\ brating blades which are observed
in practice. If we assume that
25 \ Combined g = 0.053 the? a.scatter.o? natural
\vﬂ”aﬁmw frequencies within the limits of
0 //1 + 2.5% corresponds to a frequency
/ mismatch of & = + 1, while a scat-
\/ ter of * 5% corresponds toa = * 2,
-2 "4 I i.e., it reaches a value which
gives an appreciable scatter of the
-5l _ amplitude of vibrations and phase
- -5 0 as 0 15 difference between the blades.

For the case of combined vibra-
Fig. 2. Phase Differences between tions (gé? < 2), Fig. 1 shows am-
Vibrating Blades. plitudes of vibrations with the fre-
quencg of the external force, as
well as the combined amplitudes gé?‘+ k b

ENERGY RELATIONSHIPS

We shall first consider the case of less than limiting frequency
mismatch, and, using the approximate expression for the displacement of
the blade as a function of time

2o=A cos(t—q),

we shall determine the work done by aerodynamic forces Ba and the damp-

ing forces Bfr in one vibration period, namely
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Rf=___ﬂ:ﬂ.}!4 . (2&)

By adding we getb /80

kA2
R=R|+Rfr:—nC1A2(l—T). (25)

The work of the external force applied to the blade is

R, ,—"AF sing, (26)

ext™

Expressing sin¢ in terms of tang and using Egs. (10), we get the fol~
lowing expression for the.work performed by the external force

ext

R ~.—:C1A2(1—~Ei:1).

As should have been expected, the total work of all the forces under
steady-state condition is zero, i.e.,

Rext+ Ra‘*‘Rfr =0. (27)

Tt follows from the above equation and from Eg. (25) that blades vibra-

ting with amplitude
4
A:A”=‘/..;_

operate, as it were, under equilibrium conditions, i.e., the work of
the external force on these blades is zero. It can be determined from
Eq. (10) which blades will have the so-called critical frequency mis-

match
acr-——'il/)%—:—- (28)

Blades with frequency mismatch smaller than écr have an amplitude

greater than A and consequently the total work of the aerodynamic and
friction forceg'will be negative, i.e., the work of the friction forces
exceeds the work of aerodynamic forces. In order to maintain vibra-
tions in these blades, work must be supplied by an external periodic
force. Analysis of phase shifts for blades with below-critical
frequency mismatch shows that work from an external force is actually
supplied to them. These blades will serve as "dampers" of their
blading stage.

Blades with freguency mismatch greater than Lécrl have an ampli-

tude smaller than éiiand the total work of the aerodynamic and friction
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forces will be positive, i.e., work of aerodynamic forces exceeds the
work of friction forces, while the work of the external force is nega-
tive; consequently, the blades themselves supply work to the external
force. In other words, they are the sources of the external force.
The external force serves for transmitting the excess work of aerody-
namic forces from these blades to the "damper" blades. These blades
will be called "exciters."

It can be seen from Fig. 1 that the limiting freguency mismatch
will always be greater than the critical; hence blades subjected to
combined vibrations will also be exciter-type blades, but due to the
fact that they vibrate with two frequencies, their energetics will be
different.

The equation of motion for a blade with a frequency mismatch
higher than the limiting, i.e.,

zg=b;cos vt + A cos (T —¢), (29)

will be used for determining the work of the aerodynamic and friction
forces. The above expression describes, in the general case, when w
is not commensurable with unity, an almost periodic motion, hence the
work will be determined as an average from the following expressions

£

R,=lim _i“ P zydr; (30)
1 ¢y -
Ry :11m—T—ijrzod1:, (31)
T—>co o
from which we get
C C 3 3
Ry=—F [ 424 &2 (Z wtg)-sunjart 2 AY)], (32)
RF=—%4w$+2mﬁm+2N$+A% (33)

Adding terms and using Eq. (18) will give the total work of the aero-
dynamic and damping [frictionall] forces

2% b2
Rertr =G w1 MG (1 2E)

For convenience, we shall refer the work in Egs. (23)-(25) to a
unit of time. Then

o 3 C,
-G a1 1 3G g
2 ( PR ) (35)

a

9
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Ry=—7 4% (36)

8
R=R R =-C1 _ kA2
R=Ri+ Ry =—5 A2(1 4 ) (37)

Since the natural frequencies of a blading set are random, then
the initial pressure for self-induced vibrations, which depends on the
ratio between the number of the damping and exciting blades, can have
an appreciable scatter.

The blading set as a whole is not subject to any external forces, /82

for which reason we should also have the condition

.?(Ra—}-Rf,):O- (38)

We introduce still another assumption, namely, that an identical
external periodic force acts on all the blades of the set, irrespective
of their position in the disk. This in itself suffices for determining’
the initial self-induction pressure.

Using Egs. (34), (37) and (38) and breaking up the blading set into
groups with the same frequency mismatch relative to the common frequency
of the set, we will get the following condition for absence of a periodic
force in the set as a whole:

a

kA;

q
T) +ZnsA§(1 + % kA§)=o, (39)
1

14
Zm,.Ag(l_
1

where subscript i pertains to a blade with a lower-than-limiting fre-
quency mismatch, m, is the number of blades in each group, and p is the

number of groups of such blades; correspondingly, s, Es and g will be
the subscript, number of blades in a group and number of groups for
blades with a higher-than-limiting frequency mismatch. On the basis

of our assumption that the external forces within the set are identical
for all the blades, we will get as many equations such as Egs. (40) and
(4L1) as there are groups of blades:

2\

k)ﬁ:kA%[a?—}-(l—ij—")z] (=1, 2...p); (Lo)

2\2
k)é:kA%[a§+ (1—3'2:'5)] (s=1,2...9). (L1)

From the above two equations, together with Eq. (39), it is possible
to determine 55“2 for each group of blades and thus also the amplitude;
1
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and if one also uses Eqs. (10) and (19), then it is possible to obtain
the phase differences between the blades. The quantity k is a function
of the pressure of self-induced vibrations, i.e., solution of Egs. (39)-
(41) also yields the initial self-induction pressure.

The initial pressure which is obtained by solving the above system
of equations depends on the frequency of the entire set on which all
the calculations were based. The frequency which will ensure a minimum
initial self-induction pressure, i.e., minimum vibration stability of
the set, will be precisely the frequency of vibrations of the blading.
In the preliminary calculations we have for convenience assumed a com-
mon frequency which is equal to the arithmetic mean frequency of the
blading set.

Calculations, which are not presented here due to space limita- /§§
tions, were performed for two arbitrarily assembled sets of blades. It
was assumed for simplicity that each blading set consisted from three
blade groups: wheel No. 1 held 18 blades with natural frequency of
273 cps, 4 with 280 cps and 18 with a frequency of 287 cps, which makes
up three frequency groups, but only two groups with respect to freqien-

cy mismatch, i.e., one group containing L4 blades with mismatch of EO =0
and 36 blades with mismatch 21 =+ 1 (the sign of the separation does

not affect the amplitude, i.e., the energetics of the blade). Wheel
No. 2 contains 16 blades with frequency of 273 cps, 8 blades with 280 cps
and 16 blades with a natural frequency of 287 cps, i.e., QO = 8 and

=0 andm

= 32 and a, = + 1, respectively.

20 1
Calculations for an ordinary, serially produced stage yields an
initial pressure p, of 700 mm Hg for the first wheel and P.. of 1260
in =
mm of Hg for the second. If we imagine a set consisting of blades with
the same natural frequencies, then Ei = 600 mm of Hg.
n

CONCLUSIONS

The assumed scheme for calculating self-induced vibrations in the
presence of an external periodic force makes it possible to explain the
scatter in vibration stresses in blades of the same blading set and the
phase differences between the blades., Scatters in the initial pressure
which are observed for sets of the same design are also explained in this
manner.,

The above analysis can also serve as a basis for practical conclu-
sions, namely that if blades are matched up on the basis of their
natural frequencies, then it is possible to tune all the blading sets
to the upper level with respect to the initial pressure. The promise
of this approach for elimination of self-induced vibrations is the fact
that it does not require any substantial modification of design.
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The above analysis has its shortcomings. Firstly, we have
examined only a profile rather than a blade, secondly, consideration
was given only to translational motion of the profile, while twisting
of the latter was not considered. For these reasons the results
which were obtained can be used only for comparison purposes, l.e.,
for clarifying the qualitative aspect of the problem.
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COMPUTATION OF VIBRATIONS OF VARIABLE-THICKNESS DISKS
BY THE RITZ METHOD

Engineer A.V. Karpov

Vibrations of gas turbine engine components are attributable to many /8%
factors related to the processes which take place in these machines. Hence, T
designing a reliable unit with an extended service life requires one to
study the possible vibrations of individual elements, as well as the engine
system as a whole.

A large number of studies were performed (by A. Stodola, R.W. South-
well, A.V. Levin, A.D. Kovalenko, V.Ya. Natanzon, I.A. Birger, D.V. Khronin)
on vibrations of turbomachine disks.

The importance and complexity of these calculations require further
development and refinement of existing methods, in particular those based
on the Lagrange and Hamilton principles. Variational methods for solving
these problems are effective (from the point of view of reducing the volume
of computations) in the case when consideration is given to the effect of
the individual structural elements of the disk (rim, body, radial ribs) on
the frequencies and modes of its vibrations; here some approaches make it
possible to obtain formulas convenient for this kind of calculations, since
the geometric parameters of the above elements are contained in them in
the gen=ral form.

The present paper considers a variational method for designing variable-
thickness disks with a rim and radial ribs. The suggested methods for solving
the problem of vibrations of intricately-shaped disks can in principle be
simplified and used for solving of other problems of disk vibrations.

FREE VIBRATIONS OF AN INTRICATELY-SHAPED NONROTATING DISK
According to Hamilton's principle, an elastic system which is in
motion actually undergoes during a time interval t -t displacements which

0 1
are porportional to the extremum of the action integral J, where

J=if(3—}<)dt, (1)

where E is the potential energy of the elastic system and K is its kinetic
energy.

For the case of natural vibrations of a circular plate, E is ex- /85,
pressed as
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a2W , 1w P w
=1 {2 2Ty
2 .‘ Nor2 77 or + 202 (2)
re0 )
2wl aw 1 W) 1ow 1w ’J} rdedr.

—2 (1 —u){Z¥ R4
( ®) or2 \ r2 662+ r or r orob r: 98

Accordingly, K is expressed as

K=—§—jr'" Tiz (%‘:l ? rdbdr, (3)

re O

where r, is the free radius of the inner cirecle of the disk, Tout is

its outside radius, D is the cylindrical rigidity, variable over the
radius; W is the deflection of the middle plane; u is Poisson's ratio,

r and 6 are polar coordinates, h is the thickness of the disk (which

is variable along the radius), and p is the density of the disk material.
The deflection W will be represented in the form

W=u(r)cosn8 -cos pf, (4)

where p is the circular frequency of vibrations and n is the number of

nodal diameters.

Following Ritz, we seek the solution of Eq. (1) in the form

u=2 2,9;. (5)
i=1

where ii are the sought coefficients and . is a suitable function
i

which satisfies, as a minimum, the geometric boundary conditions.
Since, according to Hamilton's principle, functional J possesses
extremal properties, then 6J = 0, or

a’

aak

We introduce the notation

(7)

da, or

(/]

— ()=
aak( )=1¢,
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Substituting Egs. (2)-(4) into Eq. (1), and using Egs. (5)-(T), /86
we get

/ n n

o 1 9 8
jD (2‘74*?;”“:‘“"201?1:»":—22“1?1 X

To i=1 i=1 i=1

an
. , 1 2 1 - n?
X (‘?mT‘J_— Tre —% ?k) (- [Eat?m(—r‘ Frr —';2“(?12)—*' (8)
im1

n n n
1 n? 2f 1
—.(—;Z Qizir =3 Zam)f?m— n’ (;Zam—-

i=1 i=1 i=1

1 o 1 1
—720,-%) (r—2 Pe — 7%,)] rdr—

il

—ep? th (2 a.-?.-) qardr=0.
i=]

7o

The above expression is a system of homogeneous equations which has
nonzero solutions in the case when the determinant made up of coeffici-
ents of a, is equal to zero. From this follows a frequency equation,
which serves for determining the natural freqguency.

For intricately-shaped disks, D and h which are terms in Egs. (8)
are functions of radius ry and the usual method for solving the fre-

quency equation consists in integrating it by sections; here it is
assumed that the rate of increase of the disk thickness along the radius
is constant.

In real disks the number of such sections is large, requiring a cor-
respondingly large amount of intermediate calculations. It is of interest
to solve Egs. (8) by a method which uses functions approximating the
variable thickness of the disk (taking into account the rim and the
radial ribs) in the range of radius variations r_ to r . For example,

=0 —out
for a disk with a linearly-variable body thickness one can use a com-
bination of the following functions

m
II. h==L//7:, ~ where m is an odd number;

III. h=e '™ - where o, is an even number.
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Graphs of these functions with appropriate shift of the coordi-
nate origin are represented in Fig. 1. The real thickness of the disk
can be obtained with an accuracy sufficient for engineering calculations

by adding up the abscissas of functions (I), (II) and (III) along the /8T

radius.
It should be noted that in 1928 Pichler proposed, for use in calcu-

lations related to the deflection of circular plates of variable thick-
ness (without the rim and radial ribs), the exponential function

.
y=e €. as an approximating relationship.
by appropriately selecting coefficient B, it is possible to describe a

wide class of variable-thickness plates.

Pichler pointed out that

r r T r o
I (3 o n
tyg-k 2
7 o
0 - - } -
; A g r 0 h

Fig. 1. Graphs of Functions Approxi-
mating the Variable Thickness of a Disk
with a Rim and Radial Ribs.

Example. Let us find in the general form the freguency equation
of a disk of linearly-varying thickness with a rim, the disk central

bore radius being ESN (Fig. 2).

i
I
™ rr r.lf_’c'\ E
&
Ty w2

Fig. 2. BSchematic Diagram of a Disk
with Bore Radius rye

In this case functions (I) and (II) have the form

(hf2); = b —kr;
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"/ vach
(h[2)1p = ¢+ l/+—:—.

Quantity D has the form /88
m o m 3
Ehs E(I—kr+ ‘/———r :c )
= = 0,67 L (9)
12(1—p2) (1 —p?)
where
I=6b6+ec.
We select
n
¢, =(r—rofth u=3 a;(r—ro)'*.
i1 (lO)

As is shown by calculations, this selection of the function for
deflection of the middle surface gives, in many cases encountered in
practice, the circular frequency E_(S—lo% for i = 1 and 3-5% for is=
= 2) with an accuracy sufficient for engineering purposes. We assume
further that the disk profile is sufficiently well approximated by a
third-order parabola (disks with smooth transition from the disk body
to the rim when the ratioc of the average disk thickness to the rim
thickness is more than 1/3). Then, restricting ourselves to 1 =1
and assuming u = 0.3, we get

"u 3 3
0,67 E — ac3

S (l--kr + l/f ac )[(4—n’l)?—(5,6——4,2n?)—
1—p2 a

)

ro I'g
- (10,4 —14,4n2 + 4n1) —2—(4— 16n2 4- 6n4) +
r

3 4
7o To
L+ —(4n2 —4nt) + — (4nt - 1,4n‘2)]rdr~—-
rd r4

’" 3 3
r—
——QQp’-’S (l —kr + l/**fc—-‘) (r—roArdr=0.

70 (11)

The above expression can be used to calculate in the first approxi-
mation the circular frequency p for a different number n of nodal diam~
eters for a number of disks with different geometric parameters 1, k,

a and c.
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SUMMARY

1. A method was presented for vibration design of intricately-
shaped disks by the Ritz method, using functions approximating the
actual thickness of the disk.

2, Functions for approximating the thickness of intricately-

shaped disks were given.
3. The method presented is suitable for disks with a rim and

radial rib thickness conforming to the concept of a thin plate.
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THE HYDROSTATIC BEARING AS A SOURCE OF VIBRATIOKS
Candidate of Technical Sciences, G.A. Ivanov

Figure 1 depicts schematically a hydrostatic bearing with communi- /89
cating chambers and the assumed diagram of pressure distribution over -
its length. It is assumed that the bearing uses an incompressible vis-
cous fluid and that the flow in all the elements of the bearing is
laminar. It is also assumed that the stream constriction coefficient

£ = 1 and the sum of pressure losses gin at the duct inlet and £

str out

at its outlet is appreciably smaller than the pressure lost in the duct
in friection, i.e.,

Rl

o> S
8l

<x°,’ f

.Fig. 1. Schematic drawing of a hydrostatic bearing with
communicating chambers.

Ein_l-—sout<<Efr' (l)
We assume that /90

o< D, (2)

where 6§ is the size of the clearance and D is the shaft diameter. This
permits us to assume that the flow of the fluid in all the clearances
between the connecting web of the bearing race and the shaft is equiva-
lent to the fluid flow in a flat slot. The hydrodynamic effect which
is produced at the connecting webs is disregarded.

It is assumed that the bearing acts as the so-called rotating load,
the angular velocity w' of which is in general not the same as the angu~
lar velocity of the shaft. For a rotating load the volume of fluid
bounded by the ith chamber is variable.
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We select a stationary coordinate system XOY (Fig. 1) and a moving
axis 9-¥-l' This axis passes through center O of the rim and through
center gl of the shaft which is displaced relative to the rim.

We now write the flow-rate balance equation for the ith chamber

in the form [sic]

aii—nH eyt auH gy ey rarny—=

V,
=14, — 1 B, (3)

where
Qji—1)— — 3,4‘DKK1(i—1);

e=1+34P [Kie+-K (Kiti-ny+Kia+)ls
aiisn= —3,4PK K+

— Hyilyy _ Hy: — Hyir
Hk(-'—1)=—H('-; Hy =" Hk(:+1)=—H—')—;
in in in
meolpd ,
ay,=~—10,2 —_'YHin 2 (COS Biti+1) —COS {3,-(1_1\);
av; ’ ‘ /91
—; = —0:5(m+4-20) 3 Deo’ (cos fi(i+1) —cos Big—n); =
w0 e_m i
Y ayH L D 1at’ D b .

Ki—n=(1-4ecosBiu—n)%
Kie=%ig+1) — $ii—1 432 (5in Bigi 41) — sin Bag—ny -+
41,522 [ 41) — Zicie1) + 0,5 (sin 23;¢i41) —sin Bri-n)] +

- o o 1 (e nor .
+0,25¢3 [3 (sin Bi¢s41)—sin 'r’i(i—l))“l—? (sin 3F"i(i+1)—sm3?1(1—1))];

K4y =(1+Fecosfigsn)
Biu—n=Bii—n— o't Big+n=DBiu+1) —of;

by
Bi(i—l)=au/’_'§‘ —ig—y ; iqi—ny=arcsin L=

5,
(1 +1)
Bii+n=0y,+ ¥ + i1y e+ =arcsin —.
2

For a multichamber bearing a system of equations analogous to Eq. (3) is

set up for each chamber.
The carrying capacity of the bearing is found from

90
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F=(Pi,—Pou)(m+1) DS, (%)

where P, 1s the fluid pressure at the bearing's inlet, P is the
—in —out

same at the bearing's outlet; m is the length of the bearing's chamber,
1l is the length of the annular connecting web; D is the shaft diameter
and 6 is the load factor of the bearing.

=V st (5)
0,=Y H,; cosdp,sin{p-+$ic+n + dig-n);

i=1

i=n
6, =Y, H; cos a;ysin (@, +Pici+n +Pici—n)

i=1
where n is the number of chambers.

The angle between the direction of the load and the direction in
which the shaft is displaced

] .
Q,  —arc tan =%
» » (6)

The rate of flow through the bearing

4
=125, e (n ~}:H’*‘) (1)

We start the analysis of the load carrying bearing with a three-
chamber bearing with the relative dimensions

where 60 is the size of the radial gap, which is determined with the

shaft situated concentrically with respect to the [bearing's] rim.

For the bearing under consideration we assume that b, the width of
the connecting web is constant for all the chambers. It is assumed that
the shaft diameter is D = 50 mm, the angular velocity of the shaft and
the load is w = W' = 40O sec~l. The circumferential rotational speed
in this case comes out to v = 100 m/sec.

Compressor oil with density of 882 Kg/m3, u = 95.7°10-2 N-sec/m? is
selected as the working fluid. The pressure drop over the bearing AP = Pin

--P = 962 N/m2.
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Figure 2 shows curves of the load factor 6 as a function of the

relative eccentricity e for a three-chamber bearing with the above rela-
tive dimensions. It follows from the figure that for the same e the
magnitude of 6 varies as a function of two limiting instantaneous direc-
tions of the rotating load, i.e., toward the "center of chamber" and
toward the "connecting web." This means that due to differences in the

carrying capacity of the lubricating
layer a source of vibrations exists in
the bearing. Thus, when 6 = 1, the
1// amplitude of vibrations involving dis-
placement of the center of the journal
2 A(// in the bearing is 0.002 mm, while when
/<z: 1 8 = 1.8 this amplitude is 0.0l mm.
Then this analysis was applied to a

Zﬁp/ five-chamber bearing with relative
dimensions m/D = 1, b/D- = 0.2, E/GO =

) 100, 1/5O = 100. Here it was assumed

_/ that the shaft diameter is D = 50 mm
and the angular speed of the shaft and
the load is w = w' = 4000 sec™l. The

a5 T€ previously described compressor oil was
again selected as the working fluid.
Calculations have shown that a five-
Fig. 2. Load Factor as a chamber bearing has the same load carry-
Function of the Relative ing capacity for any direction of the
Eccentricity. 1) Direction rotating load's vector. This means that
of Displacement toward the changing from a three- to a five-chamber
"Connecting Web"; 2) Direc- bearing makes it possible to eliminate
tion of Displacement toward undesirable vibrations of the shaft which
the "Center of Chamber." are due to differences in the carrying

\JN1

capacity of the lubricating layer.
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STABILITY OF THREE-LAYER CYLINDRICAL SHELLS
BEYOND THE ELASTIC LIMIT

Candidate of Technical Sciences V.V.Serdyukov

The present paper examines the stability of eylindrical shells /2&
consisting of two outer layers interconnected by a filler and sub-
Jected to a normal pressure and axial force when the stresses in the
bearing layers exceed the proportional limit. It is assumed that the
thickness of the bearing layers and their temperatures are different
and that they may be made from different materials.

The stability of three-layer cylindrical shells beyond the elastic
1limit was considered previocusly in [1] and [4], etc.; however, in all
the cases known to the author the study was limited to the case of
bearing layers of the same thickness and temperature. These conditions,
as a rule, do not apply to elements of modern aircraft, which has made
the present investigation necessary.

This study is based on:

1) the theory of plastic deformations;

2) principle of "continuing loading";

3) theory of shells with large radii of curvature; and the follow-
ing additional assumptions:

a) the bearing layers take up forces in their plane and deflect¥¥
(the Kirchhoff-Love hypothesis holds for them);

b) the filler take up shearing /95
forces only, so that the normal of =
the entire section remains straight;

¢) the total thickness of the
shell is small as compared with its
radius.

We shall consider an infini-
tesimal element of the shell, sep-
arated by two planes passing through
the axis of the cylinder and two
parallel circles (Fig. 1).

It will be assumed that in the
bearing layers of the shell act in-

ternal forces 2}1, Eﬁl’ s', 8", I',,

Eﬁg and moments M', , M, H', H".

M'ss, Mﬁz, the variations of which in

each layer (in the absence of ex-
Fig. 1. Element of a Three-layer ternal twisting moments),can be rep-
Cylindrical Shell. resented on the basis of the theory
of plastic strain.

¥¥Trans]. Note: The Russian sentence makes no sense.
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ST =biydel - blgdel; 88 =bidyly; 8T5= bisde]}- bigdes;
SMi= —di 3y —didyd; SH'= —disdyle: (1)
SMi= — dlydyi—dbabys,

where SEL Sé,ayh, Bxﬁ 8x§,8xﬁ——are variations of the tensile and shear-
ing strain, variations in curvature and twisting of the middle surfaces
on the bearing layers [2]%.

i 12 ; 3 ;i
b1 ='thdfx=B' (I—TK °;<2));

b B (1= K]

i 12 0 opife 03 peigig),
bgs = Ao dyu=— B (1 n K cyo),

i 6 & 1 5,

here
sz—g— Ein'; Ki=1—(EI/Ed);
chomaifels ool ok,

where hl is the thickness of the corresponding bearing layer, Ei—is the
- Tt

i, i —
tangent modulus;, Eg'ls the secant modulus; Olb and ox are normal
X

%0

stresses in the subecritical state and oé 1is the generalized stress.

We shall consider pure bending of an isolated element in planes /96
perpendicular to axes X and Y. If the variations of forces TL and
- - 1

T are denoted respectively by ST:  and 6T , then we will have, from
-2 —1f1 —2fl
the equilibrium conditions,
T +iT1a =0 } (2)
elagr +8T2g =0

or, on the basis of Egs. (1)

*¥Subscript i replaces one or two primes and defines the ratio of
parameters to the inner or outer bearing layer of the shell, respectively.
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’ - L4 ? - L] f - N - - »
bylsig +bixterg +bndza - bider =0; } (3)
b2tz -1.-17::332 1 +b1235x £1 +b22552 I3 =0,
where
(‘51 £1 % GEQIH kY 631 £ asgln — are variations
of the corresponding strain in the bearing layers in pure bending.
On the basis of the assumption that the common normal remains
straight we have
' st om
8 =21y ey = 21713 } (4)
O2aq = 2has V% T T Zy,,
where z',, Eﬁl’ 512 and gfg are distances to the corresponding neutral

surfaces (see Fig. 1), x. and ¥, are changes 1in the curvatures of the
1 2

neutral surfaces of the shell.

On the basis of assumptions of this paper (retention of a straight
common normal and the theory of shells with large radii of curvatures)
we can write

T1= A =A== Wers }

oo (5)
Vo=l = Vo= Wyy,

where w 1s the radial displacement of the neutral surface (subscripts
x and y denote differentiation with respect to the corresponding co-
ordinate).

Substituting Eq. (L) into Egs. (3) with reference to Egs. (5), we
will get expressions for the positions of the neutral bending surfaces
in the form

Aoy + Byw . Eywy,— Byw
1% xx 1%y, z=av’ xx 1%py,

Zl = a k)
Cwyy ’ ! Cwyx

(6)

’ Aty L Bow ~ Eowyy — Agw
zZo=a 2% xx 2 yy; Zy=a ~2%yy 2%xx
C‘lﬂyy C'Wyy

where a is the distance between the middle surfaces of the bearing
layers,

A, =by (bya+ b22) — bia (bia - bi2);

A,=b1z (b1 + 1) — buy (bra-+b12);

By=b3s (bia -+ bi2) — bz2 (b2t bio);

By= by (b1 + b3) — b (bio+- bia);
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C =(bu+01) (bt b2) — (6124 b12)’s
EIZC'—AI; Eg=C"—Bgn

The position of the neutral surface on torsion ngt
be obtained by considering the twisting of the isolated element and
equating the sum of variations of forces S to zero (we denote them by
s, )

—b

and gﬂt) will

85, 4+ 881 =0 (1)
or, having reference to Egs. (1)
b3sdy: - bssdy. =0. (8)

The variations of the shearing strain of bearing layers, Y’t and

y", on the basis of the hypothesis of a straight common normal are

By, = — 22 Y12 } (9)
8y1= 22 Y1

On the basis of the assumptions made the relative twist of the
neutral surface x12 can be represented in the form

X12=X12= 1o = Wry- (10)
On the basis of the above expression and Egs. (8) and (9) we get
5
. 33
=A@
C bggt b (11
. by
T byt b

Thus, in the general case and on the assumptions made all the three
neutral surfaces are at different distances from the middle surfaces of
the bearing layers of the shell; here the position of the neutral sur- /98
face of twist depends on the stressed state of the bearing layers, while
the position of the neutral shearing surfaces, in addition, also depends
on the manner in which the shell is deformed.

The stability equations for a cylindrical shell with large radius
of curvature have the form

(BT, (3S), =0;
(3S), (Tl =0;

1. o ' n Vo
'E OTQ + (O“ Il)x_t-i- 2 (QH):.?T ((",t Iz)yy + T?'wxx + Tgwﬂﬂ= O’

(12)
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where 210 and 220 are forces corresponding to the subceritical state.

We now apply these equations to our problem; the variations of forces
and moments will denote those total values of forces and moments in

the entire cross section of the shell which can be expressed in the
form

2
T, =Y, 8T;
i=1
2
T, =Y T3
i=1
2
eS=Y 857
i=1 (13)
2
8= — 121 2T121— 3 (diidyi — disdys);
=1
v r - - 2 3
tMy= — Tozs—eT22z5— Y (dy; 374 — dbd%3);
i=1
2 . .
AH=—18'2.4-3i8"z, — 3 didyae.
i=1

Substituting the force and moment variations given by Eg. (13) into
stability equations (12), and using Egs. (1), (5) and (10) while bearing
in mind that the variations of tensile and shearing strains of the
middle surfaces of the bearing layers have the form

; i ; w i
i — P P coovio—=— ! i
o;;_— ul; r,;é._ ! ; 0\{2_11 —|..'v , (]) )

where Ei and y_—i— are the displacements.of the middle surfaces of the
bearing layers along axes X and Y , respectively, we get

ity byt x - (B2 b3s) Uy - (b12 - b33) Vaey - baattyy -+ bauryy—
—(b12+b12) L:};‘ =0;
(b3t b12) 13y + (b4 b12) iy + b33V icx + basViex - bavyy - borvy,—
— (b2 +b2) 22 =0;

. o . ou , v . v P " ew
bro—= L bjo—2 b2 + byy—L —byz1u buz\llers—
12 R + 12 R + 22 R + 22 R 11<1 xx.r+ 1<l xsxx
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’ v ” LA 1 ror L4 LA 2 r o -
- bl2zlvxxy + 51921V exy — 2b332 U yyy 20332 8y — 2b332.t'vx.ty -+
~ L] " L 14 r L L4 » r 1 r
+ 2b332t'vxxy - b12212uxyy + b1222u.xyy - b22227}yyy+

Oz, — (b bin) o (b2l — bpzt) =2 + (15)

+ (bQQZé — b;Qz;) wLRy - (dil + dIl) Wprxx™

—2 (dx'z—l- dio + di;3‘|‘ a’;a) Wexyy — (d:;r{— d;2) Wyyyy T
+ Tgwxx"l_ ngyy =0.

In addition, on the basis of the hypothesis of retention of
straight common normal we have
u—u' —aw,=0;’
v' — " —awy,=0. (16)

We have thus obtained a system of five differential equations for u',
u", v', v" and w, the five displacements of the bearing layers which

are produced when the shell bulges. We assume that these displacements
can also be represented in the form

u'=U"sin ptsin ne;
vi=V'cos p§ cos ny;
w=W cos nptsinne,

(17)

where .
t=x[R; p=mnR[l,

n is the number of waves which form on the surface when the shell bulges,
m is the number of half-waves along the generatrix; 1 is the leungth of the

shell, y_i—. 11 and W are the amplitudes of the corresponding displacements.
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— by p? — bygn?

(b + b3g) b

(ba+ bzg)un
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Substituting Egs. (17) into Egs. (15) and (16) and dividing out the/101
trigonometric functions, we will get a system of five linear homogeneous

equations for U', U", V', V", and W, the determinant of which has the
form of Eq. (18), where

P Qa A]P2+B]'12 . 1, a E”.L?—Bllﬂ .
A

R Cp2 TR Cp2 ’
O A By o — Au ot Egr?
2 R Cn? R Cn2 *
bss Y 2

, a
TR TR it

Expanding determinant (18) in the fifth-column minors and equating
it to zero, we get an expression for the critical loads

— T2 —Tn?=(by,p; — b1%)) n2 - (bya9; — bop¥3) n? +

d“ +d

+d
+——E‘;—“ 4"l_R2 (@t +dgtdy)wn+- i e (19)

— by, +b55) * e ASI — (bt 2)(” Ao _ l)+

a A_s4 a A
+RPA53+R e

where ASl’ LYYL 5_53, 5_51{ and g55 are understood to denote the corre-
sponding minors of the fifth column of determinant (18).

Let us now consider some particular cases of practical importance
for which simpler results are obtained.

a) Symmetrical bulging on axial compres51on
Setting in this case in Eq. (19) TY = 0 and n = 0, we get
2

1
—N= ) A+ B4-pD, (20)
where
b+ b, )2
A=b,}-b; _ ()" AL LAY
22 22 b“-i-b"

bla b1y | a biby —bigby
B = b — bl 4 (b9, — b)) ——i2 o
b1 — 0 nh T Ont T TR bt by

100



here R by + by R?
W a Al T a El
Ol == L =L
71 R c’ "1’) R C

Finding the minimum of Eq. (20) with respect to p, we will get an ex-
pression for the critical compressive force in the form

—7%.=2VAD-}-B. (21)

b) Case in which u2 << n2 (this condition for a single-layer shell
defines "medium length" shells.

Tn this case we disregard in Eq. (19) terms with multipliers u2 as
being negligible as compared with terms with multipliers n®, and as a
result we get

4
— T —Tin*=F £ - Gp2 - Lnt, (22)
where
by + b30)°
F=b;1+b;l—(+—l.z)—;
boy + by
b oboy — biobs
G=b"~b'——b~'b'+—a— 12¥22 12Y22 .
i 272 v "
1272 1 R b22+b22 *
in basbay +déz+d;‘z.
R by by rR2
here
g=0B . @B
2 R C 2 R C

c) Stability when subjected to external pressure only and under the

condition ug << g?.

Setting in Eq. (22) 210 = 0 and finding its minimum with respect

to n, we will get in this case a formula for the critical load in the
form

4FL L G2+ GV G212FL
(G + y GEL12FLy? (23)

—T73..=21"2x TRVZ

The number of waves for which buckling occurs can be then determined
from ‘

,R2 G+ Va@+12FL
12 )

nf=na
2L
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In general, stability calculations on the basis of Egs. (19) and /103
(22) can be performed by using the method of V.I. Feodos'yev [5] for
determining the stressed stage of the shell. This is done in the fol-

lowing seguence.
1. We specify a number of values of total deformations sl of the
n

shell in the axial direction, and then for each El we specify a number
n

of total deformations EZnin the circumferential direction; deducting the

temperature deformations, we find the corresponding force-induced def-
ormations of the bearing layers of the shell [5]

[ — it | — —alfl
gj=¢y, — QL el=¢gy,—a't,

where e+ and e~ are the force-induced deformation of the bearing layers,

. i i . . -
while o— and Eﬁsare the linear expansion coefficients and average tem-

peratures of these layers.
2, On the basis of the magnitudes of force-induced deformations

obtained we determine the effective deformations of the bearing layers
from [3]

5"';75"1/50'FEH‘F512a

where e= are the effective deformations of the bearing layers.

3. From the stress-strain diagrams for the given materjals and
temperatures we find the corresponding effective stresses oé.

L. We determine the subcritical stresses -in the bearing layers
of the shell from [3]

and the circumferential and axial forces corresponding to them from

2 2
79— chot's T4— clak
2 oot 1= 2,

i=1

5. From stress-—strain diagrams we determine for each layer its
secant and tangent moduli, on the basis of which, using Egqs. (19) or
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(22), we calculate the critical circumferential force Eg , since then /104
cr

Ig is defined as in paragraph 4 above.

= 6. We construct for each € a curve of To* Vs TU, according to
in —2cr 2

paragraphs 4 and 5. The actual critical value Egcr will be defined at

the intersection of this curve with the straight line TO* = TO. On
2cr 2

the same graph, according to paragraph 4 it is possible to lay off

values of 29 as a function of Eg; here the Egcr thus obtained will have

correspondiig to it Eg , defined by a vertical line drawn from the
cr
point of intersection of the curves of Egzr Vs 28 to the intersection
of the curve of Ig vs Eg (Fig. 2).
ree pe .

Zcre 1 49

Fig. 2. For Determining the

‘o 0 0
Crit F T and T
ritical Forces L.y or

for e = Const.
1n

T. We construct a graph of TO Ve TO , from which we estimate
—2cr —lcr
0

the stability of the shell, comparing the graph with values of 22 and

gg which are produced by the actual loads.

For particular cases when only arn axial force or external pressure
is applied, there will be no differences in principle when performing
calculations on the basis of Egs. (21) or (23), and these calculations
can be performed in approximately the same sequence.
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THE APPLICATION OF CONFORMAL MAPPING TO PROBLEMS OF
THE THEORY OF ELASTICITY

Candidate of Technical Sciences V.B. Gorlov

Many practical problems of the theory of elasticity can be solved /105
in the final form if one knows the conformal mapping function which R
allows one-to-one mappings of one region onto another. Thus, for ex-
ample, if the known stress paths form an isometric grid in the given
region, then it is possible to obtain a solution for another region
subjected to the same stress pattern if one knows the function which
maps the given region onto the region for which the solution is sought.

However, the derivation of a conformal mapping function even for
a region of the simplest geometric shape is a quite complicated task,
and frequently runs into unsoluble mathematical difficulties.

The problem of deriving conformal mapping functions has intrigued
many authors. All their approaches can be divided into analytic [3]
and graphical [5], all quite cumbersome and, because of the great dif-
ficulties in their practical application, very rarely used.

Hence, in addition to the above methods, extensive use is made of
techniques which employ various analogies for deriving mapping func-—
tions. Among these are the semiempirical methods based on the electro-
hydrodynamic analogy.

In 1922 Pavlovskiy [5] has suggested an effective technique for
solving filtration problems based on electrohydrodynamic analogies.
Later on, in 1937 this method served as a basis for the work by Brad-
field, Hooker and Southwell [8] in which they have suggested an elec-—
trical simulation technique for conformal mapping, known as the method
of orthogonal trajectories or potential lines. This method is based on
restoring (simulating) corresponding orthogonal trajectories, i.e.,
potential lines and stream lines, and determining the corresponding /;Qé
points as points of intersection of equipotential lines.

In 1955 A.G. Ugodchikov [7] has applied this method, utilizing
electrically conducting paper [2], to the mapping of a circle onto a
given simply-connected region on the condition that the center of the
circle and one of its bounding points are transformed onto given points
in the given region. The advantage of this method is the fact that it
allows finding the conformal mapping function in a form very convenient
for applications, namely in the form of the polynomial

z=0(Q)=CltI+Cl+ . . . FChl 4+ . . .,

where C. and 92 are in general complex coefficients.

1

Thus, for example, the function which maps a circle of unit radius
onto a specified simply-connected region S which lacks corner points on
contour L and which does not have axes of symmetry, has the form

R=m
w@)= E C\Lr+1
k=0
105



where m is the number of corresponding points in conformal mapping and
gk are complex coefficients.

When the region does have an axis of symmetry, which is very fre-
quently the case in practice, the mapping function has a somewhat dif-

ferent form

k=m
o @)=Y Cler+, (1)

k=0

where g is the number of axes of symmetry and Qk are real coefficients.
The number of points m in conformal mapping depends substantially
on the complexity of the geometrical shape of coutour L of the given
region S. Thus, for an L in the shape of an ellipse, the number of
corresponding points is 8-12, while for a more complex contour, for
example, a disk with dovetail slots, the number of such points in
mapping is 18-25 or more, i.e., the number of corresponding points in
conformal transformation increases with an increase in the complexity /107
of the geometric shape. It should be noted that increasing, i.e., in-
creasing the number of terms in polynomial (1) is one of the methods for
increasing the accuracy of conformal mapping by the electrical analog
technique. However, one should be careful when increasing, since in-
creasing it excessively may seriously reduce the accuracy of the mapping.
This is due to the following: As is known, the electrically conductive
paper used is anisotropic with respect to conductivity. For this rea-
son this paper is calibrated prior to use. On the basis of this cali-
bration it is possible to determine the shift, Ar of a point belonging
to a given paper cutout relative to its real positicn. The cutout is
considered satisfactory if Ar o S 0.01 I where I is the radius of

that point on contour L which is furthest from the coordinate origin.

—fe
g

2
0
—

)
b

Fig. 1. Schematic of the Instrument.
1) Rectifier; 2) Plug-in Type Resis-
tance Box; 3) Galvanometer; L) Model.

The maximum number of correspondence points m should be selected so
that the minimum distance Ahmin between two such adjacent points would

be greater than Ar , 1.e.,
Tmax
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Ahmln > Arm.x-

One of the means for increasing the accuracy of analog simulation con-
sists of iterating (from 6 to 15 times, depending on the geometric
complexity of contour L) the simulation of the specified contour L,
with subsequent averaging out of the results. -

As can be seen from the above, the accuracy of electrical analog
simulation of conformal mapping depends on a number of factors, which
must be taken into account when using electrically conducting paper.
Hence it is better to use an electrolytic bath or a metal foil as
analogs of a given region. But their use is also not free of diffi-
culties.

In order to determine the coordinates x and Xn of correspondence

points gn, use is usually made of the EGDA-5, 51 unit, or of an instru~
ment assembled in the manner shown in Fig. 1.

The operation of these instruments is based on an electrical
analogy which consists in the fact that the orthogonal grid of rays
® = const and circles with p = const (Fig. 2) of the region of the unit
circle and its corresponding orthogonal grid in region S will be a re-
flection of the motion of the current in the conducting medium. Hence,
if a potential difference is applied in an appropriate manner to the /168
specified region, then the current flow lines and equipotential lines —_—
form on it an orthogonal grid. Due to the uniqueness [one-to-one cor-
respondencd] of the conformal mapping, this grid will coincide with the
grid of 6 = const and p = const, which is obtained on conformal mapping
of a unit circle onto region S.

This analogy was used for constructing conformal mapping functions
for an ellipse and a region which is filled by a disk with dovetail-
shaped slots. Since these regions have axes of symmetry, only parts of
these regions, included between axes of symmetry, were cut out from the
electrically conductive paper for simulation purposes. A specified
potential difference was applied to the cutout (along the sectioning
lines) by means of busbars. It should be noted that a poor connection
between the busbars and the cutout introduces an error into the deter-
mination of the correspondence points, which makes it necessary to
manufacture the busbar in such a manner that tight contact between the
cutout and busbar be ensured over the entire contact surface. In addi-
tion, in order to increase the accuracy in determining the correspond-
ence point on the cutout, it is better to supply to the busbars a
potential difference exceeding the recommended by 30-50 volts. After
coordinates X and»EX.Of the correspondence points are determined the

known formulas [7] A—m—1
1 . 1 .
CO=§;(uoTum)+I E Ug;
=1
1 1 ne=m~1
Cm=§;;[u0+(—1)mum] +7 2 (—1)"1&,,; (2)
n=1
Re=n~—1

Co=2 (= 1) += 3 pcos = kn
nel 107



§

7 O=const

Fig. 2. The Electrical Analogy Phenomenon.
are used to determine coefficients gk of the conformal mapping function

(1) (see Tables 1 and 2).

Table 1

Coefficients gk for an Ellipse

EnnDDanEDn

0.0605

Ce 2,7822 0.4485!0.1505 0.0320 0.0138]0.0079 0.0020,0.0014

Table 2

Coefficients Qk for a Disk with Dovetail-Shaped Slots

k 0 1 2 3 4 5
f

Cr 123.22006 13.18116 | 8.02388 | 4.16576 | 0.555564 | —1.40282

7 Continued

6 7 8 9 ‘ 10 11 12
—2.22430 —1.66228 + —0.72320 0.12524 l1.00728 0.93868 | 0.84386
Continued

13 14 l 15 ' 16 17 18 19

-+~

0.15524 | —0,38642 l———O.65808 l —0.69270 | —0.37074 | 0.02408 | 0.32936
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o . L o Continued
20 i 21 ‘ 22 ‘ 23 24 25

—0.00824 | —0.57486 —0.18714

0.59704 , 0.50404 I 0.21970

The conformal mapping functions obtained in this manner allow us
to construct, within a given approximation, the contour L' of a given
region 3. Naturally, contour L' will differ from the given contour L
(Fig. 3). This difference is governed by the precision of the con-
formal mapping. As is known, any machine part is made with some
tolerance describing its deviation from its required geometric shape.
Hence, the criterion of the required precision of conformal mapping
should be the tolerance for deviation from the geometric shape of the
given machine part; a conformal mapping should be regarded as satisfac-
factory if the scatter of points of contour L' relative to specified
contour L lies within the manufacturing tolerance.

Fig. 3. Comparison of Contour L' with Specified
Contour L.

Alongside with the method of [8], in which the coefficients of the
mapping function (1) are calculated from Egs. (2) obtained by inter-
polation, another approach was suggested by G.N. Polozhiy [6] who has
used the Christoffel-Schwarz integral for determining the coefficients
of the mapping function. The latter method also allows us to determine
this function in regions with corner points. Thus the use of electrical
analog simulation of conformal mapping has appreciably extended the
capabilities of the mathematical tools of the theory of elasticity in
solving a number of engineering problems.

The above method for determining conformal mapping functions which
is suitable for simply, as well as doubly-connected regions, makes it
possible to solve a wide range of problems of stresses to calculate the
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stress concentration factors in machine parts of complex shape. This
method was used successfully by this author for determining the stresses
and stress concentration factors in a dovetail-shaped turbine-blade
locking device J1].
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STARILITY OF THREE-LAYER CYLINDRICAL SHELLS
IN THE ELASTIC AND INELASTIC REGIONS*

Candidate of Technical Sciences I.A. Yefimov

The stability of three-layer plates and shells was studied by many
Soviet and Western scientists. However, in examining all the work on
the stability of three-layer shells with a rigid filler (band primarily
on the theory of shallow shells) it can be seen that the problem of
their stability under combined action of several different loads has
not yet been sufficiently studied.

The present paper considers the "small scale" stability beyond the
elastic 1imit of three-layer cylindrical shells with a filler made of
longitudinal and transverse corrugations (these also include three-
layer shells in which the ribs of the corrugation lie along a low-
piteh (helix) subjected to separate or combined action of several kinds
of loads. It is assumed that a purely plastic condition exists in the
bearing layers at the instant of buckling and that the filler behaves
elastically. The filler is regarded as continuous and orthotropic,
capable of taking up longitudinal forces and moments (the resistance
of the corrugation to longitudinal forces and moments was not con-
sidered in [2]), the bearing layers are isotropic, have the same thick-
ness and identical mechanical characteristics. The substantial differ-
ence between our work and that of [1] and [L] (which are based on the
theory of shallow shells) is the fact that in considering the deforma-
tion of the filler in the circumferential direction it does not consider
the fact that the shell [actually] is not shallow, which in the final
count increases the accuracy of results for sufficiently long shells [2].

We introduce the following notation

u, , u s V. » V are the displacements of points on middle surfaces
~in® —out® —in~ ~out

o)

of the inside and outside bearing layer, [and the velocities of these

displacements], respectively; w, = wout = w; t is the thickness of the
in

bearing layers; ¢ is the thickness of the filler; R is the radius of the
middle surface of the filler; 1 is the length of the shell; £ is a di-
mensionless coordinate, measured from the edge of the shell; Qis an angu-
lar coordinate, measured from a specified section; m is the number of
wave halves, which are formed on bulging along the generatrix; n is the
number of waves forming along the circumference of the shell; N is the
axial force; g is the external normal pressure, and G is the reduced
shearing modulus in a plane perpendicular to the ribs of the corrugation.

Using the scheme of the deformed state assumed in deriving the equa-
tions of elastic stability [3], and following the same approach as [2],
we will get a system of five equations for the five unknowns U, V, w,a,
and B. These equations have a structure similar to that of equations
for the elastic problem

¥The part of the report pertaining tdwglastic stability of three-
layer cylindrical shells under combined loads is published in [2].
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The above expressions are equations of stability of a three-layer
cylindrical shell with a rigid orthotropic filler, when the filler
itself behaves elastically, while the bearing layers are stressed
beyond the elastic limit. From this system of equations it is possible
to get, as particular cases, the equation of stability of a three-layer
cylindrical shell with a filler made of longitudinal as well as trans-
verse corrugations.

We shall consider the case when this shell with a filler made of
longitudinal corrugation is acted upon by an axial force and a uniform
transverse pressure. Then from [2] we get that

SO0, by3==byy=lby;==bgy =0, (2)
and from Eq. [3]
a=u,, v,==0, (3)
Making substitution
x=tR, Oy=Rde (L)

and using Eqs. (2) and (3), we reduce Egs. (1) to the form

1) AUg+ LUy (C—~1) Ve —(F —1,) 0g=0;
2) CUgxt(L+a+4H)Ve+(1+d) Vet
+ Wiy — 0 + dogey 4 B+ "B =0;
3) FUr—€Vig+(1+4) Vo—aV g — (5)
— fWeeer 4,05 — Goitse by — d0ppp—
— W — B Begp — I'Boge =0;
4) G,V 430 + Gop 1 83Bei + 338, — G.B =0.

where

A2utB . ~_butbs . p_bn,
25 byy [
[ = baa; G.=0uR . 5 _GnR? .
22 02 by
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B by o, (1P bz:+1733_l_ 2 bytbn, 5, 8
6R2 by’ 2R2 269y 6R2 26y 12R2 °

2 b 45 ¢+ £)? 2 b D
o= 12 + 33; f=[( )+_] 1 + 1

6R2  2by 2 6 | 2600R2 ' 265R2’
- (C' + t)z _ti b12 +2b33 . Il.— (0 “+ t)z E.
£ [ 2 13 2b95R2 T 2R 2by°
b= (c +1£)2 bu+2b33_ l‘=—l— (¢ 4 £)2 .
2R by 2 2R
P 3
A 0hyy T T 2y
6l=_‘1_521+1733 s B=c 633; 6;=i-,
R 2by 269, 2

Assuming that the edges of the shell are freely supported, we shall
assume a solution for Egs. (5) in the form

U=U,cos pt sin ne;
V =V sin pt cos ne; (6)
o=uw, sin p§sin ng;

p =12, sin pt cos ne,

where U V., o

> Vo and BO are arbitrary constants, and

0]
maR (1)

}],:_—_ .

{

Here the boundary conditions for free support of edges [3] are satis-
fied¥, i.e.,

[0]im0, 1;r="[®:i]:-0, ;R =0; (8)
BT im0, & =[V]t=0, 1,2 =[Ple=0, ;r =0.

Substituting Egs. (6) into Egs. (5) and performing operations
similar to those performed in the elastic problem [3], we will get¥**

*¥If the length of the shell is 1 > 2R, then the results obtained can
be used also for other conditions at the edges, because these conditions
then have a very small effect on the magnitude of the critical load [5].

*¥*¥Thig result (without taking into account the work performed by
the corrugation to resist axial loads) was obtained in [2].
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This expression can be used for determining the critical load for a three-
layer cylindrical shell with a filler made of longitudinal corrugation
subjected to the combined action of an axial force and a transverse pres-
sure beyond the elastic limit,

In the case when only the normal pressure is acting, we get from .
Eg. (9) with reference to the fact that

T?———O; Tg_z_qch

that
s s e P+
qcr-—E—zz 023 b (n2_1)+
-2 n24-1
2 R2Gy
1 byybog — B 4
+_(2M+ Bl)__f‘__ﬂ_
R boo nt (n2—1)

We shall now consider a three-layer cylindrical shell With a filler
made of transverse corrugation when subjected to the same loads. In
thig case, according to [3]

F=wy e V=0 (10)

Substituting as in Eq. (4) and using Egs. (2) and (10), we reduce Egs.
(1) to the form

1) Up+ LU (C—1y) Vie—(F —f)) 0;=0; )
2) CUwp+(L+at+4H)Vy+(A+d)Ve+
by — Awyo-dogg -+ Hloge==0;

3) FUg—eVggq—]-(A-}-tQ)V?——-dV?w_

— Jorgee 2,06 — gt Lyogp— (11)

— g9 — A — kagy — Ltge =0;
4) 8 VigtGyor 1 yoeee -+ 805 +-

+ 830 — G2=0,.
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where

A—Zn+B . o _butbs . p__ bn,

%y by by’
2
L=38; =82, ¢, TuR,
11 11
(c+82 | 2] by [(c+t>2
a= — ; b=|—F7—b
[ s T ]%um’ 5 lmt

g (200 s
d={[ (U+t)2 | t2] 22+ }

2 2buR2’
_ [ (ett)2 | 27619+ 2bg3
g_[ 2 T 3] 26,,R2
+ 1)
e= [(c ) (b12+2b33)+'“‘ (b,2+4b33)]2b =
2
f_ 12R2 °
e (¢ +£)2 bgy + b33 . k‘=L (c+2
2R %y 2 2R
l‘= (C—l—t)? 62]+2b33.
2R %
T 3
1—'%7’ —2b
1=L13_12+_b33_. 3'=L; 3;—0-@—,
R 2bu 2 2bll

In the case cf a shell freely supported at the edges, we assume a
solution of Eg. (11) in the form

U=U,cos ptsin ne;

VV=V,sinpt cos ne; (12)
w=w, sin pfsin ne;

a=a, cos pisin ne,

where %, -YO’ W and OLO are arbitrary constants, while u is defined by
Eq. (7). 1In this case conditions (8) of free support of the edges are
satisfied.¥*

Substituting Eq. (12) into Eq. (11) and performing the usual trans-
formations, we get

*We note, that, by v1rtue of Eq. (10), condition (8) follows from
Egs. (1) and (k).
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(13)

This expression can be used to determine the critical load for a three-
layer cylindrical shell with a filler made of transverse corrugation
subjected to a combined axial force and transverse pressure beyond the
elastic limit.

Since Egs. and (1 tai fficients b i

as. (9) (13) contain coefficients b 912 and 222 which

themselves are functions of the applied loads, it is expedient to cal-
culate the critical loads by means of successive approximations. Here
integers gﬁ and n should be selected (g_= 1,2, 3, ...3 n=0, 2, 3, b,

...) so as to obtain a minimum for either Ig or TO (while the other

quantity is held constant).
When ¢ = 0 and h = 2t Egs. (9) and (13) become an expression for a
single-layer shell

n? 4 1 o
ety

h? b1ibgy— b2 4
= (byn?(n2—1 e .
12R? (Baa?( ) _’:}" by mi(n2—1)
¥Ts contained in Eq. (7) for u.
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